简介:基于损伤粘弹性材料的一种卷积型本构关系和大挠度薄板的yonKdrman假设,给出了损伤粘弹性薄板准静态问题的数学模型,其控制方程为一组非线性积分-偏微分型方程.采用Galerkin截断技术,将原积分-偏微分系统化为积分系统.然后采用四阶的Runge-Kutta法在数值上得到了损伤粘弹性薄板的准静态问题的解.
简介:基于两种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对两种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对两种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对两种不同的齿轮传动系统所展现的复杂动力学现象进行分析.
简介:建立了直齿行星齿轮的动力学模型.其中,齿与齿之间的啮合非线性由弹簧-阻尼器-间隙-啮合误差环节模拟.提出了一种以行星轮转角为变量的时变啮合刚度与时变啮合误差表达形式,解决了变转速下行星齿轮动力学模型的描述和求解问题.通过对动力学模型进行求解,分别研究了转速、齿侧间隙、啮合误差和负载等重要参数对行星齿轮动力学特性的影响.
简介:为研究含间隙齿轮碰振系统的全局及周期运动的稳定性及分岔条件,建立了齿轮副主动轮的单自由度非线性动力学模型.运用非光滑系统Melnikov理论研究齿轮系统异宿轨道全局分岔条件,然后,求得各分段系统的通解,再将每个切换面作为Poincaré截面,运用组合映射的方法分析系统的周期运动特性.最后通过数值模拟,得到不同参数条件下系统的运动状态和分岔特性,验证了Melnikov方法分析齿轮非光滑系统的有效性.
非线性损伤粘弹性薄板准静态力学行为分析
基于两种齿轮碰撞振动的实验和数值分析
直齿行星齿轮动力学建模与分析研究
含间隙齿轮碰振系统的全局动力学分析