简介:研究了一般非完整系统虚位移关系的不确定性问题与非线性问题,提出了本质线性非完整约束和本质非线性非完整约束的概念,证明并给出了各种虚位移定义和交换关系的合理适用范围.研究表明,在本质线性非完整系统中,各种虚位移定义和交换关系是合理的,可以在数学与力学上得到统一.然而,在本质非线性非完整系统中,已有的虚位移定义和各种交换关系会导致数学或力学上的矛盾.这些矛盾来源于对本质非线性非完整约束的物理实现不清楚.
简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:研究了最新提出的超混沌吕系统的最优同步问题.利用哈密顿-雅可比-贝尔曼方程,对具有不确定参数的超混沌吕系统设计了最优同步的方案,分别得到了无限时间区间和有限时间区间上的最优控制器和参数控制律.数值仿真验证了理论分析的正确性.
简介:广义Birkhoff方程是一类更为普遍的约束功学系统的方程.研究定常广义Birkhoff方程的平衡稳定性.建立平衡方程,给出系统的能量变化方程,根据Birkhoff函数的定号性质,建立平衡稳定性的判据.举例说明结果的应用.
简介:研究松弛状态下的非圆截面弹性螺旋细杆,即带有原始曲率和挠率的非圆截面弹性杆的平衡稳定性问题.基于Kirchhoff动力学比拟,建立用欧拉角表达的弹性杆动力学方程.忽略线加速度引起的微小惯性力,仅考虑截面转动的动力学效应,使欧拉方程封闭.证明松弛状态下的非圆截面螺旋杆无论在空间域或时域均满足一次近似意义下的Lyapunov稳定性条件.从而为螺旋形态弹性细杆存在于自然界中的广泛性和稳定性作出理论解释.提示负泊松比材料的螺旋杆可能不稳定.