简介:应用γ-PGA制剂(固体含γ-PGA8%,液体含γ-PGA3.5%),以圆盘造粒、掺混包裹两种结合方式生产不同γ-PGA浓度的复混肥,在肥料生产当日及存放30天,90天,180天分别测定肥料中γ-PGA含量及其物理性质,探讨复混肥中γ-PGA的稳定性及γ-PGA对肥料物理性状的影响。结果表明,不同时段复混肥中γ-PGA含量相对稳定,但因不同加工工艺过程导致γ-PGA的检出率存在较大差异,其中,采用包裹肥料方式,检出率明显较高。γ-PGA对复混肥物理性状也有一定影响,采用造粒方式含γ-PGA复混肥无粉尘、无结块等现象,采用包裹方式含γ-PGA复混肥虽存在少量粉尘、结块等问题,但不至于影响肥料中γ-PGA含量,说明生产含γ-PGA复混肥以包裹方式相对较好。
简介:在考虑客户满意度和生产过程中不确定性因素前提下研究了混装线投产排序问题.以三角模糊数表示加工时间、六点模糊数表示完工时间,建立了基于交货期的客户满意度评价方法.并进一步以满意度为优化目标,结合模糊不确定因素,建立了混装线投产排序问题数学模型,并通过遗传算法进行求解.最后,通过数据实例分析了客户满意度与完工时间的相互影响,主要从三个角度对结果进行分析:(1)最小生产单元MPS(MinimumProductSet)内产品比例的均衡性对客户满意度和模糊完工时间的影响;(2)MPS内产品比例相同的条件下,模糊交货期区间权重比例对客户满意度的影响;(3)相同条件下,客户满意度和模糊完工时间分别作为优化目标时两者之间的差异.从而验证了该模型的有效性.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.