学科分类
/ 2
30 个结果
  • 简介:为了避免成像物体在核磁共振成像(magneticresonanceimaging,MRI)系统实际操作中的旋转难题,现提出一种基于径向基函数(radialbasisfunction,RBF)神经网络和微分进化(differentialevolution,DE)思想的磁共振电阻抗成像(magneticresonanceelectricalimpedancetomography,MREIT)算法.该算法只利用单方向磁感应强度,首先RBF神经网络对肺部仿真模型可行域电阻值和仿真计算磁场强度与真实电磁场强度之间的不匹配目标函数建立非线性模型,其次用微分进化算法寻找最优解.通过在二维、三维肺部仿真模型的仿真实验研究.结果表明,该算法在允许的误差范围内可以有效地对病变的肺部组织进行阻抗图像重构,统计结果与基于微分进化思想的MREIT算法相比,明显缩短了计算复杂度与计算时间.

  • 标签: 电阻抗成像 肺部模型 微分进化 径向基神经网络
  • 简介:为了提高内衬套的检测速度和精度,保证内衬套的使用寿命,提出结合图像处理技术实现内衬套表面缺陷的自动检测.通过采用CMOS相机在近红外背光源暗域照明环境中获取图像并进行处理,实现对内衬套的毛刺及擦痕的自动检测.本检测系统主要通过图像形态学滤波和GrabGut图像分割算法分别实现对内衬套表面毛刺和擦痕的检测,通过轮廓拟合提取检测毛刺和擦痕的图像,从而实现对内衬套的表面缺陷检测.实验表明,所提出的内衬套表面缺陷的自动检测方法具有高效、准确的优点,且该系统运行稳定,因而具有推广价值.

  • 标签: 图像处理 形态学滤波 GrabCut图像分割算法 缺陷检测
  • 简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.

  • 标签: 磁共振成像 各向异性扩散滤波 遗传算法 参数优化
  • 简介:对与球罐材质相近,厚度、坡口形式和焊接工艺相同定制的对接焊缝试块.利用超声衍射时差法(TOFD)检测技术和超声相控阵检测技术进行检测,分析比较两种方法的检测结果.实验结果表明,超声TOFD检测可以高效和精确地检测出焊缝中的缺陷,但它存存近表面和近底面盲区;超声相控阵检测可以借助探头声束的聚焦和可转向的特点,检测出焊缝近表面和近底面的缺陷.因此,将两种检测方法结合使用,可以有效提高焊缝近表面检测效果,提高缺陷的检出率。实现缺陷的精确定位和定量.

  • 标签: 超声衍射时差法 超声相控阵 球罐对接焊缝 盲区
  • 简介:微分进化算法主要有三个随机参数:种群大小(NP),缩放因子(F),交叉因数(CR).这些参数的取值对EIT图像重建效果的好坏起着重要的作用.但当前微分进化算法参数选择具有随机性,大多数的参数研究是通过标准测试函数进行,没有具体到特定的领域.针对这些问题,文章以头部EIT图像重建为例,在给定目标函数和终止条件的基础上,通过大量的仿真实验,分析了各个参数对图像重构结果的影响,并给出了这些参数的合理选取区间,从而为微分进化算法在EIT图像重建中的应用提供了有效的依据.

  • 标签: 电阻抗成像 微分进化算法 有限元模型 参数设置
  • 简介:绘画作品的数字化对有效使用绘画资源具有重要意义,传统图像分类方法并未考虑绘画作品主观特性,且大部分特征需要人工提取,存在细节特征丢失等问题.在此提出基于卷积神经网络的绘画图像分类方法,分析了卷积核大小、卷积神经网络结构宽度、训练样本数量对分类结果的影响,以优化网络结构和参数.实验结果表明,该方法对绘画图像分类的有效性,在不同绘画图像数据集的分类实验上也得到了较好的分类结果.

  • 标签: 卷积神经网络 绘画图像分类 卷积核大小 网络结构宽度 训练样本数量
  • 简介:提出了一种参数自适应的图像超分辨率重建方法.在基于稀疏表示的图像超分辨率重建的经典算法模型框架下,正则化参数可以根据每个图像补丁本身情况自适应地确定,从而克服了人为选择参数且所有补丁参数需一致的缺点,因此使图像重建效果得到提升.实验结果表明,我们所提方法在不同尺寸扩大因子和噪声环境下都优于人工确定参数的情形,三种评价指标均表明所提方法是有效的.

  • 标签: 稀疏表示 参数自适应 超分辨率 图像重建
  • 简介:将实时快速图像处理技术引入射流浓度场检测领域,结合自主研发的浓度场扩散试验装置,设计了一套以DM8148为图像处理核心,CCS5.5.0和Matlab为软件平台的射流浓度场检测系统.在实验水槽射流扩散实验中,CMOS相机采集示踪物质浓度扩散的一系列瞬时图像,并提取示踪物质扩散区域,通过图像处理算法使示踪剂的扩散图像以等浓度线图形式显示,实现流场浓度分布可视化.实验表明,本系统对污染物扩散规律研究及水环境质量评价均有借鉴意义,同时也表明本系统在水体污染物浓度场测量中具有一定的可行性.

  • 标签: 射流浓度场 图像处理 DM8148处理器 等浓度线图 扩散实验
  • 简介:在此提出一种改进的深度卷积神经网络模型,该模型通过增加并联卷积层,拓展卷积神经网络宽度实现,有利于提取图像特征,提高网络性能;卷积层中对特征图像采用批量归一化方法进行预处理,加快网络训练.实验结果表明,该模型能更准确地学习宫颈癌细胞图像特征,从而有效降低了分类错误率.

  • 标签: 卷积神经网络 图像识别 宫颈癌细胞
  • 简介:动脉脉搏波的波形可以作为动脉疾病无创检测的重要指标.本文建立了动脉管壁-血液耦合模型,利用ANSYSWORKBENCH和CFX相互结合的流固耦合算法,进行了结构分析和流体分析的双向耦合计算,实现了对桡动脉脉搏波的数值模拟.

  • 标签: 桡动脉 反射波 流固耦合 数值模拟
  • 简介:针对固体结构内部温度测量的工程需求,比较了目前工业中应用较多的热电偶测温法、光纤光栅测温法、中子共振谱法和超声测温技术,发现超声测温技术具有非接触式测量、测温范围广、响应速度快等特点而更适用于固体结构内部温度的测量.调研了超声测温技术的发展历史与国内外现状,重点对超声温度场重建方法进行了介绍与分析,发现现有的重建方法主要是针对一维温度场的而且都存在参数获取困难的局限性,导致重建方法的适用性较差并且重建精度较低.综述了超声测温技术在火灾损伤、医疗卫生、核力发电、冶炼制造等领域中的应用,讨论了超声测温技术在测温机理、声时测量算法和时间测量分辨率等方面存在的技术问题,总结了超声测温技术在今后发展中的重点研究方向并提出了展望.

  • 标签: 固体结构内部测温 超声测温技术 温度场重建
  • 简介:深度学习是人工智能领域发展的一个不可或缺的部分,并且广泛应用于图像识别方面.为了进一步降低宫颈癌细胞图像的识别错误率,本文提出了一种基于卷积神经网络的改进算法.该算法通过搭建卷积神经网络框架,对下采样过程中特征提取阶段的池化模型进行改进,在下采样过程中对池化域内的每个元素分配合适的权值得到下采样特征图.实验结果表明,我们所提出的基于卷积神经网络的改进算法降低了对宫颈癌细胞图像的识别错误率.

  • 标签: 池化 卷积神经网络 深度学习 宫颈细胞图像 图像识别
  • 简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.

  • 标签: GABOR小波 步态能量图 特征融合 改进的KPCA 支持向量机
  • 简介:为有效降低宫颈癌细胞图像图像识别中的假阴性率,在此提出一种改进的残差网络算法.该改进算法通过对交叉熵代价函数增加权重实现,根据不同病变程度的宫颈细胞建立权重矩阵,有针对地对假阴性类别的输出进行加权处理,优化分类输出、减少假阴性误判.实验结果表明,对于不同的宫颈细胞图像数据集,本改进算法输出分类效果稳定;与传统图像分类算法相比,改进后的交叉熵代价函数算法在识别分类宫颈细胞图像时,能有效降低宫颈癌细胞图像的假阴性率.

  • 标签: 残差网络 图像识别 交叉熵代价函数 宫颈癌细胞 假阴性率
  • 简介:对国内具有代表性的4家燃气表企业生产的超声波燃气表进行了高低温环境下的相对误差及重复性试验.分析了超声波燃气表的计量性能受流量和温度影响的变化特性,比较了国产超声波模组和进口超声波模组的性能差异.试验结果表明:流量和温度对超声波燃气表的计量性能均存在影响.超声波燃气表在大流量段的计量性能优于小流量段(低于3qmin).当试验温度偏离参考温度20℃时,超声波燃气表的计量性能明显下降.试验结果还表明,在参考温度20℃下,进口超声波模组的性能优于国产超声波模组.本文所获得的试验结果可为我国超声波燃气表相关标准的制定提供参考,为国内超声波燃气表的研发和改进提供底层试验数据支持.

  • 标签: 超声波燃气表 计量性能 温度 流量 相对误差 重复性
  • 简介:为提高反窃电效率,在用电信息采集系统的基础上提出一种窃电行为分析方法.即针对高供低计计量方式,建立窃电行为分析模型,并通过软件仿真验证模型的正确性.在此基础上,对各种窃电行为反映的负荷数据特征进行归纳总结,提出将实际窃电案例中可能遇到的窃电行为分成七类.通过负荷数据远程判断具体窃电行为类型,为现场稽查人员提供技术指导,从而提高窃电查证效率.

  • 标签: 窃电行为 高供低计 用电信息采集系统 反窃电
  • 简介:针对推荐系统的准确性提出了一种优化算法,该算法首先利用用户的特征进行聚类,然后在聚类之后的各个聚簇中运用混合协同过滤框架为每个聚簇训练一个模型;同时在运用混合协同过滤时,针对传统的基于用户的协同过滤推荐算法在计算用户相似度方面进行了改进.实验表明,提出的优化算法显著提高了预测的准确性,从而提高了推荐结果的质量.

  • 标签: 特征聚类 协同过滤 计算用户相似度 一致评分矩阵 混合模型
  • 简介:提出一种步态能量图(GaitEnergyImage,GEI)的Gabor小波特征与协同表示的步态识别算法.首先通过运动目标检测,二值化和形态学处理等预处理操作得到步态轮廓图,然后进一步从步态轮廓图计算得到步态能量图.该算法将步态能量图的Gabor特征作为特征矢量,采用协同表示的方法进行步态识别.在实验阶段,通过在中科院自动化研究所CASIA步态数据库的DatasetB上进行测试,证明上述算法具有运行速度快的优点,并且对于跨视角步态识别具有一定的鲁棒性.

  • 标签: GABOR小波 步态能量图 协同表示
  • 简介:在数据驱动的集中式空调系统故障诊断过程中,特征选择是一个必要的预处理.选取重要的特征作为分类依据,无论是从经济的角度还是对故障的有效判断上,都具有非常重要的意义.现采用不同的特征选择方法对一组冷水机组故障数据进行特征选取,并利用支持向量机完成分类,最后通过对比分析获取冷水机组故障诊断中最重要的特征子集.

  • 标签: 特征选择 遗传算法 RELIEFF算法 支持向量机
  • 简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.

  • 标签: 目标检测 特征融合 卷积神经网络 Faster-RCNN算法