简介:为了避免成像物体在核磁共振成像(magneticresonanceimaging,MRI)系统实际操作中的旋转难题,现提出一种基于径向基函数(radialbasisfunction,RBF)神经网络和微分进化(differentialevolution,DE)思想的磁共振电阻抗成像(magneticresonanceelectricalimpedancetomography,MREIT)算法.该算法只利用单方向磁感应强度,首先RBF神经网络对肺部仿真模型可行域电阻值和仿真计算磁场强度与真实电磁场强度之间的不匹配目标函数建立非线性模型,其次用微分进化算法寻找最优解.通过在二维、三维肺部仿真模型的仿真实验研究.结果表明,该算法在允许的误差范围内可以有效地对病变的肺部组织进行阻抗图像重构,统计结果与基于微分进化思想的MREIT算法相比,明显缩短了计算复杂度与计算时间.
简介:为了提高内衬套的检测速度和精度,保证内衬套的使用寿命,提出结合图像处理技术实现内衬套表面缺陷的自动检测.通过采用CMOS相机在近红外背光源暗域照明环境中获取图像并进行处理,实现对内衬套的毛刺及擦痕的自动检测.本检测系统主要通过图像形态学滤波和GrabGut图像分割算法分别实现对内衬套表面毛刺和擦痕的检测,通过轮廓拟合提取检测毛刺和擦痕的图像,从而实现对内衬套的表面缺陷检测.实验表明,所提出的内衬套表面缺陷的自动检测方法具有高效、准确的优点,且该系统运行稳定,因而具有推广价值.
简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.
简介:针对固体结构内部温度测量的工程需求,比较了目前工业中应用较多的热电偶测温法、光纤光栅测温法、中子共振谱法和超声测温技术,发现超声测温技术具有非接触式测量、测温范围广、响应速度快等特点而更适用于固体结构内部温度的测量.调研了超声测温技术的发展历史与国内外现状,重点对超声温度场重建方法进行了介绍与分析,发现现有的重建方法主要是针对一维温度场的而且都存在参数获取困难的局限性,导致重建方法的适用性较差并且重建精度较低.综述了超声测温技术在火灾损伤、医疗卫生、核力发电、冶炼制造等领域中的应用,讨论了超声测温技术在测温机理、声时测量算法和时间测量分辨率等方面存在的技术问题,总结了超声测温技术在今后发展中的重点研究方向并提出了展望.
简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:对国内具有代表性的4家燃气表企业生产的超声波燃气表进行了高低温环境下的相对误差及重复性试验.分析了超声波燃气表的计量性能受流量和温度影响的变化特性,比较了国产超声波模组和进口超声波模组的性能差异.试验结果表明:流量和温度对超声波燃气表的计量性能均存在影响.超声波燃气表在大流量段的计量性能优于小流量段(低于3qmin).当试验温度偏离参考温度20℃时,超声波燃气表的计量性能明显下降.试验结果还表明,在参考温度20℃下,进口超声波模组的性能优于国产超声波模组.本文所获得的试验结果可为我国超声波燃气表相关标准的制定提供参考,为国内超声波燃气表的研发和改进提供底层试验数据支持.
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.