学科分类
/ 1
9 个结果
  • 简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.

  • 标签: 磁共振成像 各向异性扩散滤波 遗传算法 参数优化
  • 简介:为解决工业机器人标定中存在的成本昂贵、专业性强等问题,提出了一种基于几何约束的工业机器人运动学参数闭环标定法.首先采用D—H模型与MDH模型相结合的方法建立运动学模型.解决D-H模型的奇异性问题.其次,用Matlab对该方法进行仿真,机器人末端执行器上模拟安装一个激光器,将激光瞄准观测平面上一正方形的四个顶点,得到较精确的关节角.最后,根据正方形的几何性质建立标定方程,利用最小二乘法求解参数误差.此方法操作简单,成本低,易于测量,可避免机器人基座标系的校准工作.根据仿真结果。工业机器人绝对定位精度提高了77.87%,从而验证了该方法的有效性.

  • 标签: 几何约束 运动学参数 虚拟闭环 绝对定位精度
  • 简介:微分进化算法主要有三个随机参数:种群大小(NP),缩放因子(F),交叉因数(CR).这些参数的取值对EIT图像重建效果的好坏起着重要的作用.但当前微分进化算法参数选择具有随机性,大多数的参数研究是通过标准测试函数进行,没有具体到特定的领域.针对这些问题,文章以头部EIT图像重建为例,在给定目标函数和终止条件的基础上,通过大量的仿真实验,分析了各个参数对图像重构结果的影响,并给出了这些参数的合理选取区间,从而为微分进化算法在EIT图像重建中的应用提供了有效的依据.

  • 标签: 电阻抗成像 微分进化算法 有限元模型 参数设置
  • 简介:本文综述了近几年来色谱工作站积分参数的应用发展及相应的设置方法.

  • 标签: 色谱工作站 积分参数
  • 简介:为了能够对鱼塘、河流的水质进行长时间的在线监测,本文设计了一款在线式多参数水质监测系统.该系统具有灵活多变的传感器接入能力及数据融合性能,可以实时跟踪水质参数的变化、追踪污染源、辅助渔民养殖.系统以STM32F103为核心处理器,包括传感器及数据处理电路,通过RS485/MODBUS协议与PC进行通讯.采集的水质参数包括温度、pH、ORP、电导率、水位等五个常用基本参数.

  • 标签: 水质监测 在线式 多参数 STM32F103处理器
  • 简介:本文阐述了用超声波短时作用来处理水样,从而找到更科学地计数水体中微囊藻细胞数的方法。并通过实验进一步研究了超声波频率和作用时间对处理效果的影响。

  • 标签: 微囊藻 计数 超声波
  • 简介:在此提出一种改进的深度卷积神经网络模型,该模型通过增加并联卷积层,拓展卷积神经网络宽度实现,有利于提取图像特征,提高网络性能;卷积层中对特征图像采用批量归一化方法进行预处理,加快网络训练.实验结果表明,该模型能更准确地学习宫颈癌细胞图像特征,从而有效降低了分类错误率.

  • 标签: 卷积神经网络 图像识别 宫颈癌细胞
  • 简介:深度学习是人工智能领域发展的一个不可或缺的部分,并且广泛应用于图像识别方面.为了进一步降低宫颈癌细胞图像的识别错误率,本文提出了一种基于卷积神经网络的改进算法.该算法通过搭建卷积神经网络框架,对下采样过程中特征提取阶段的池化模型进行改进,在下采样过程中对池化域内的每个元素分配合适的权值得到下采样特征图.实验结果表明,我们所提出的基于卷积神经网络的改进算法降低了对宫颈癌细胞图像的识别错误率.

  • 标签: 池化 卷积神经网络 深度学习 宫颈细胞图像 图像识别
  • 简介:为有效降低宫颈癌细胞图像在图像识别中的假阴性率,在此提出一种改进的残差网络算法.该改进算法通过对交叉熵代价函数增加权重实现,根据不同病变程度的宫颈细胞建立权重矩阵,有针对地对假阴性类别的输出进行加权处理,优化分类输出、减少假阴性误判.实验结果表明,对于不同的宫颈细胞图像数据集,本改进算法输出分类效果稳定;与传统图像分类算法相比,改进后的交叉熵代价函数算法在识别分类宫颈细胞图像时,能有效降低宫颈癌细胞图像的假阴性率.

  • 标签: 残差网络 图像识别 交叉熵代价函数 宫颈癌细胞 假阴性率