学科分类
/ 1
11 个结果
  • 简介:对同轴射流的流动及其冲击传热特性进行了数值模拟研究.研究中采用了四种同轴射流模型,它们分别由不同直径比或不同内套管长度构成,对三个Re数下同轴自由射流流场发展和演变的特征进行了模拟.研究表明,由于同轴内套管的存在,在出口处速度沿径向的分布呈现双峰形状,双峰会随着离开出口距离的增加而消失.直径比对速度分布影响较大,但离开出口足够远后,射流速度分布就不受喷嘴结构参数和流动雷诺数的影响.同轴射流冲击传热时,直径比d/D=0.53的同轴射流在整个平板上都比普通圆柱射流有更好的强化传热效果;在冲击驻点附近,传热性能受同轴射流的直径比影响较大.

  • 标签: 同轴射流 流场 冲击传热 数值模拟
  • 简介:将实时快速图像处理技术引入射流浓度场检测领域,结合自主研发的浓度场扩散试验装置,设计了一套以DM8148为图像处理核心,CCS5.5.0和Matlab为软件平台的射流浓度场检测系统.在实验水槽射流扩散实验中,CMOS相机采集示踪物质浓度扩散的一系列瞬时图像,并提取示踪物质扩散区域,通过图像处理算法使示踪剂的扩散图像以等浓度线图形式显示,实现流场浓度分布可视化.实验表明,本系统对污染物扩散规律研究及水环境质量评价均有借鉴意义,同时也表明本系统在水体污染物浓度场测量中具有一定的可行性.

  • 标签: 射流浓度场 图像处理 DM8148处理器 等浓度线图 扩散实验
  • 简介:利用双峰泰勒展开矩方法结合大涡模拟方法,研究在湍射流情况下硫酸合水纳米颗粒的形成以及随后的成核、凝并、凝结等生长情况.包含了水蒸气和硫酸分子的不可压缩气体射入含有背景气溶胶颗粒物的稳定流体域形成纳米颗粒,对颗粒的尺寸分布、质量浓度以及背景颗粒与生成颗粒之间的竞争关系进行了研究.结果表明,大涡拟序结构会增强颗粒在流动中的扩散运动,造成了不同峰之间颗粒的转移.在背景颗粒浓度为5×10^11、直径为100nm时,背景颗粒物对新颗粒的抑制作用最为显著.

  • 标签: 泰勒展开矩方法 大涡模拟 颗粒物成核与凝并
  • 简介:行人再识别是视频监控领域的关键问题之一,难点在于不同摄像机中同一行人的图像差异较大.基于行人图像的标识可由图像中的语义属性组合间接表示的假设,现提出使用一种基于深度哈希函数的行人再识别算法.通过卷积神经网络学习得到哈希函数,结合多目标损失函数保证分类的准确和哈希编码的有效,使得相似的图像能够获得相似的哈希编码,最后比较哈希特征间的汉明距离进行再识别.实验结果表明,深度哈希特征能够有效地进行行人再识别,提高了算法的执行效率.

  • 标签: 哈希算法 深度学习 汉明距离
  • 简介:针对深度信念网络无法科学有效地确定网络模型深度和隐层神经元数目等问题,根据贪心算法思想,提出了一种动态构建深度信念网络模型的新方法.即从底层逐层构建深度信念网络的过程中,根据验证集错误分类率调整当前层神经元数目,使当前模型达到最优后,固定当前层神经数目,网络深度增加一层;继续调整下一层神经元数目,直至整个模型构建完成.最后,根据重构误差微调各层神经元数目.结果表明,与依据重构误差构建的深度信念模型相比,利用此方法构建的深度信念网络模型的分类准确率更高.

  • 标签: 动态构建 深度信念网络 模型深度 神经元数目
  • 简介:人脸识别已经广泛地应用于日常生活中,作为关键技术之一的人脸清晰度评价成为了热门的研究课题.然而,传统的手工提取特征的方法在效果和鲁棒性上都有所欠缺.为此,我们运用卷积神经网络实现特征的构造和选择,有助于提高评价结果的准确率.同时针对网络复杂、参数过多和耗时长等问题,还提出将传统的卷积结构改造成双卷积层结构的方法来提升计算速度.经过大量的实验表明,本文提出的人脸清晰度评价算法能够准确地进行人脸清晰度的评估,并且具有较快的处理速度.

  • 标签: 深度学习 清晰度评价 图像分类 视频监控
  • 简介:自智能交通系统出现以来,汽车驾乘员的安全带检测一直是备受关注的研究课题.依据城市道路的交通卡口监控数据,研究一种基于深度学习的汽车驾乘人员安全带检测算法,能够准确识别驾驶员是否佩戴安全带.通过对卡口图片进行人工标定,并运用深度学习方法训练两个检测器和一个分类器,最终实现安全带的快速定位和分类.本文提出的方法在城市道路卡口采集的图像上检测效果较好.

  • 标签: 安全带检测 目标检测 深度学习 图像分类 智能交通
  • 简介:软件的图形用户界面(GUI)的视觉设计影响着用户的使用体验.在没有既定标准的情况下,测试人员对GUI评分的主观性和大量的重复性工作,会造成GUI测试的评分偏差和效率低下.针对上述问题,本研究工作构建了基于云平台的软件GUI自动测试系统,分别使用HOG+SVM模型和AlexNet模型对GUI图像进行特征提取并分类.考虑到软件GUI数据样本量小,提出利用迁移学习策略改善AlexNet网络的性能.针对用户的多样性和算法对计算性能的需求,GUI自动测试系统部署在云平台上,用户可以对软件GUI进行实时评估.实验证明,系统用于GUI自动测试具有良好的性能,并且可以避免主观因素的影响以及减轻软件测试员的工作量.

  • 标签: 深度学习 迁移学习 GUI自动测试 云平台
  • 简介:在此提出一种改进的深度卷积神经网络模型,该模型通过增加并联卷积层,拓展卷积神经网络宽度实现,有利于提取图像特征,提高网络性能;卷积层中对特征图像采用批量归一化方法进行预处理,加快网络训练.实验结果表明,该模型能更准确地学习宫颈癌细胞图像特征,从而有效降低了分类错误率.

  • 标签: 卷积神经网络 图像识别 宫颈癌细胞
  • 简介:传统的深度信念网络模型缺乏并行有效的算法来确定网络层数以及隐藏层神经元的数目,实验时大多依据经验来选取,这样做不仅使得模型训练困难,且范化能力差,影响实验结果.针对此问题,通过比较重构误差和验证集错误分类率的乘积(加权误差)大小来选取网络层数,网络层数确定后,再根据重构误差使用渐增法或二分法来选择合适的隐层神经元数目,以使整个模型达到最优.实验结果表明,用上述方法确定模型网络层数及隐藏层神经元数目,能有效提高模型分类或预测的精度.

  • 标签: 深度信念网络 网络层数 神经元数目 重构误差 加权误差
  • 简介:本文介绍了臭氧化活性炭技术在生活饮用水深度处理中的应用。通过研究国内外臭氧生物活性炭工艺的发展现状和应用实践,综述臭氧化一生物活性炭联用技术的作用机理及在水处理中的应用研究,并提出了此项技术在应用中存在的问题,并介绍提高此项技术的应用措施。

  • 标签: 臭氧 活性炭 臭氧生物活性炭 深度处理