简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:道路目标检测在智慧城市建设中扮演着重要角色,而Faster-RCNN是目前主流的目标检测网络结构算法.本文在Faster-RCNN卷积神经网络结构基础上增加了特征金字塔网络层,并采用关注损失函数替代了原有的交叉熵损失函数.其中增加的特征金字塔特征融合层可以提取到检测图片中更具鲁棒性和一般性的前背景特征,而通过关注损失函数则能起到缓解检测图片中的正负样本不均的情况.最后,在公开数据集KITTI上实验证实,改进的目标检测算法能实现提高原有的Faster-RCNN目标检测准确率.
简介:软件定义网络(SDN)将数据层与控制层相分离,是一种新型网络体系架构.针对目前SDN网络还不能提供路由服务问题,设计了一种基于OpenFlow技术,使得SDN网络拥有路由转发功能的方案.依托RouteFlow平台,以内核虚拟化技术为基础,以Quagga软件为路由引擎,通过OpenFlow控制器为数据平面提供路由逻辑控制策略.实验结果表明,该方案不仅让SDN网络具有了路由转发功能,还能使系统保持较好的稳定性.
简介:车道线检测是智能驾驶系统的重要组成部分,它提供了车辆与车道位置关系的信息.针对智能车辆驾驶系统在视觉导航过程中车道线检测的精确性和鲁棒性的问题,提出一种有效的车道线检测方法.首先对原始RGB图像分别进行感兴趣区域设定、逆透视变换、灰度化和阈值处理;然后进行霍夫变换处理,利用斜率和中心点位置筛选检测结果;最后利用卡尔曼滤波对检测到的线段进行跟踪,预测当前车道线位置.实验结果表明,该算法能够有效解决图像中车道线不清晰以及一些干扰遮挡的问题,车道线检测准确率可达94%,具有较好的准确性、鲁棒性和较低的计算复杂度,有利于实时性检测系统的构建.