学科分类
/ 1
13 个结果
  • 简介:采用自制微萃取瓶富集/反相离子对色谱法同时测定水中五氯酚、五氯硝基苯和五氯苯甲醚三种含氯杀菌剂。考察了萃取剂种类、用量,水样pH值,萃取时间等条件对回收率的影响情况。采用基质校正工作曲线,五氯酚、五氯硝基苯和五氯苯甲醚在(5—100)ng/mL范围内线性良好。平均回收率分别为94.57%、87.65%和87.32%,相对标准偏差为1.77%、3.60%和3.90%。

  • 标签: 微萃取瓶 高效液相色谱法 杀菌防腐剂 农药
  • 简介:本文研究了用高效毛细管电泳(HPCE)法测定苯甲酸和水杨酸的最佳分离条件。将该方法用于杀菌防腐剂中的苯甲酸和水杨酸的测定时,具有快速、简单、试剂用量少等特点。

  • 标签: 高效毛细管电泳 苯甲酸 水杨酸
  • 简介:针对深度信念网络无法科学有效地确定网络模型深度和隐层神经元数目等问题,根据贪心算法思想,提出了一种动态构建深度信念网络模型的新方法.即从底层逐层构建深度信念网络的过程中,根据验证集错误分类率调整当前层神经元数目,使当前模型达到最优后,固定当前层神经数目,网络深度增加一层;继续调整下一层神经元数目,直至整个模型构建完成.最后,根据重构误差微调各层神经元数目.结果表明,与依据重构误差构建的深度信念模型相比,利用此方法构建的深度信念网络模型的分类准确率更高.

  • 标签: 动态构建 深度信念网络 模型深度 神经元数目
  • 简介:通过比较分析正常茭白与灰茭两种膨大表型茎部发育期间的CTK和ABA含量的动态变化,探索茭白茎部菰黑粉菌生长分布与CTK和ABA含量变化的调节关系.本实验以灰茭和正常茭不同发育时期茎部为实验材料,并采用酶联免疫吸附分析法(简称EuSA)测定实验材料内CTK和ABA的含量,结果表明,灰茭茎部CTK含量峰值出现在孢子形成期,可能与灰孢子的增殖有关,而正常茭出现在分蘖期,可能与茭白组织不断分裂有关;ABA激素在灰茭茎部含量一直较高,在孢子形成期后期达到峰值,正常茭在8叶期和膨大期较高,内源激素ABA的高水平表达可能是由菰黑粉菌侵染茭白以及大量繁殖引起的.总体上CTK和ABA在灰茭和正常茭白内的关系不是单一的,而是相辅相成的.

  • 标签: 茭白 肉质茎 菰黑粉菌 脱落酸 细胞分裂素
  • 简介:针对深层超限学习算法在网络层数较浅时样本特征利用率低,和网络层数较深时样本特征经高层抽象后有效性降低的问题,本文提出了两种密集连接的多层超限学习算法:Dense-HELM和Dense-KELM.这种密集连接的网络结构,使样本特征信息在层与层之间被充分利用,能够在不增加网络深度的情况下,显著提高算法的识别精度.最后,对文中提出的两种算法在20组基准数据集上进行实验,结果显示:本文提出的算法可以显著提高算法的识别精度,减少算法的训练时间,这表明所提出的算法具有有效性和实用性.

  • 标签: 密集连接 深度学习 超限学习机 核函数
  • 简介:气液两相流流型识别对石油和化工等工业生产安全性具有重要作用.目前,基于数学模型的流型识别技术成为了主要的发展趋势.本文在超声波法气液两相流流动规律研究基础上提出了一种基于符号动态滤波的流型识别方法.在垂直管道中对纯水、泡状流、弹状流和环状流四种流型进行了实验.经过对实验数据进行分析处理,结果表明该方法可以有效运用于流型识别,从而为气液两相流流型识别的研究提供了新的思路.

  • 标签: 符号动态滤波 两相流 流型识别 D-Markov机
  • 简介:绝热量热仪测试过程中,速率阈值检测方法存在抗干扰能力差及反应起始温度检测值波动较大的问题.文章在绝热量热仪(ARC)的“加热-等待-搜寻”模式下,提出运用温差变化量检测样品反应起始温度的策略.即通过对经典速率阈值检测方法存在的问题以及炉体控温热电偶与样品温度之间参比差值的分析,以参比差值与样品温度的关系构建温差基线并以此修正参比差值,修正后的参比差值的变化量用于衡量样品反应进程.实验结果表明,此动态温差检测方法相比于速率阈值检测方法,其抗干扰能力强,重复性良好,在同等控温精度的实验条件下,能够提前检测到样品的反应起始温度.

  • 标签: 绝热量热仪 温差基线 动态温差检测 反应起始温度
  • 简介:为了检测医用体外碎石焦点位置的声场特性,判断是否符合国家标准要求,特采用直接测量的方法,使用针式水听器在时间和空间域内进行逐层扫描,寻找焦点位置并测量焦点位置的声压强度;通过能量图直观显示焦点位置的能量分布,通过测量采集到焦点位置连续10次冲击波的声场强度、脉冲上升时间、脉冲宽度.这样所得到的医用体外碎石焦点声场特性符合国家标准的要求.

  • 标签: 医用体外碎石机 焦点声场 水听器 声场特性
  • 简介:伺服电动缸以其优异的定位及推力控制等性能得到广泛的应用,但是目前的测试系统难以对伺服电动缸进行全面的动静态特性及加载性能测试.于是我们设计了一套伺服电动缸综合性能测试系统,其中配置了液压动态加载装置以及相应的控制检测单元,开发了相应的上下位软件,因此能够对伺服电动缸的行程、精度、推力等重要指标进行快速自动测试,且具还有高效、稳定、操作方便等优点.

  • 标签: 伺服电动缸 液压 测试系统
  • 简介:设计了一种分布式光伏电站数据通讯管理,包括硬件系统和软件系统.硬件系统基于ARM嵌入式处理器设计,通过RS485/232串口对光伏电站终端设备的实时数据进行采集并解析处理,采用以太网/GPRS与光伏电站控制系统的服务器相连,实现数据的远程无线通讯和传输.软件系统基于多任务实时系统Linux,采用模块化设计,包含了任务管理、内存管理、时间管理和同步通信等功能模块.该通讯管理机具有对分布式光伏电站监控数据的实时采集、存储、分析处理、上传和转发等功能.

  • 标签: 分布式光伏电站 数据管理机 嵌入式系统 远程无线 通讯与传输
  • 简介:为解决空气处理机组在故障检测过程中难以获得大量带有类标记样本,且故障样本数据标记代价较高的问题,本文结合支持向量与半监督学习方法,提出了针对空气处理机组故障检测的半监督学习算法.首先利用序列前向选择选出重要的特征作为分类依据,将半监督学习方法引入支持向量的学习过程中,并使用遗传算法寻找支持向量的最佳参数.然后选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本中有利于支持向量的信息,提高学习性能.实验表明,提出的混合算法能够在故障标记样本比较少的情况下达到较高的故障诊断率.

  • 标签: 故障检测 半监督 遗传算法 支持向量机 特征选择 空气处理机组
  • 简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.

  • 标签: 模式识别 数据挖掘 域自适应 超限学习机
  • 简介:在C-R2A数据处理机上,根据故障现象结合电路原理,用替换法查找故障,并进行元件代换。

  • 标签: 显示缓冲存储器 象点 替换