学科分类
/ 2
24 个结果
  • 简介:在LaAlO3(001)、MgO(001)、SrTiO3(001)衬底以及SrTiO3(001)/PZT(001)种膜上用液相外延方法生长了PZNT薄膜。生长结果表明:在LaAlO3(001)基片PZNT晶粒以三维岛状自发生长。薄膜中有大量的焦绿石异相;在MgO(001)和SrlriO3(001)衬底上,为三维岛状异质外延生长。薄膜中焦绿石异相几乎消失;引入[001]取向的PZT种膜后,岛状三维生长变为二维生长,显著改善了外延膜的质量,获得了完整的PZNT膜。分析了衬底取向对紧邻层纳米尺寸范围的晶粒形成、薄膜晶粒的发育、克服薄膜中异相形成等的影响,总结了获得完整PZNT薄膜的生长条件。

  • 标签: 铁电薄膜 晶粒 种膜 液相外延
  • 简介:采用化学气相沉积(CVD)法,在常压无催化剂的条件下生长出了一维AlN纳米结构,通过调节生长温度控制生长形貌,利用气固原理和Ehrlich—Schwoebel势垒模型着重分析其生长机理,当温度较高时,原子扩散长度变大,并得到较高能量,使其能从上一层跃迁到下一层,且纳米棒底部直径变大,直径变粗。

  • 标签: ALN CVD 生长机理
  • 简介:中科院纳米生物效应与安全性重点实验室赵宇亮和陈春英课题组通过与IBMWatson研究院研究员周如鸿进行合作,发现了一种低毒高效的肿瘤抑制纳米药物。相关研究成果日前发表于美国《国家科学院院刊》。

  • 标签: 纳米药物 抑制肿瘤 低毒 重点实验室 生物效应 肿瘤抑制
  • 简介:本文报道了分子束外延(MBE)生长的Be掺杂GaAs,通过改变Be掺杂源的温度我们得到了不同掺杂浓度的GaAs样品.利用原子力显微镜(AFM)和霍尔测试仪分别对样品的表面形貌和电学特性进行表征.特别的,在低温和随温度变化的光致发光谱中,随着掺杂浓度的增加与Be受主相关的辐射相应地加强.

  • 标签: Be掺杂 坤化镓 分子束外延 光致发光
  • 简介:氧化铜对乙炔的聚合生长表现出较高的催化活性。利用弱碱NH3·H2O沉淀Cu(Ac)2,将所得的Cu-(0H)2真空加热到350℃后通入乙炔气体进行碳纤维的催化生长。再把等量的Cu(OH)。放入管式炉中,在氢气气氛中升温到350℃后通入乙炔气体催化生长碳纤维。对所得的样品进行SEM、XRD等表征分析。结果表明,无论是铜粒子还是氧化铜都能够催化生长直线型碳纤维,氢气对催化剂的预还原处理能够提高纤维的纯度,纤维的产量受温度影响,并在350℃时达到最大值;温度过高,纤维的产量降低。

  • 标签: 氧化铜 碳纤维 氢气 产量
  • 简介:采用低温气相传输方法,在不同的氧分压、生长时间、生长温度和衬底上有无Ni等生长条件下合成一系列一维ZnO纳米结构。结果显示,衬底上沉积的Ni会导致产物的结构多样化,温度的不同会影响纳米线的排列分布,并且这些生长条件对产物的尺寸都有影响。因此改变生长条件能改变ZnO的形貌,可能在一定程度上实现ZnO的可控生长

  • 标签: 氧化锌 可控生长 生长机制
  • 简介:高能所纳米生物效应实验室的研究人员最近发现,经过适当化学修饰的一种纳米颗粒具有高效抑止肿瘤生长的效果,却不直接杀死细胞,不仅增强肿瘤小鼠的免疫能力,而且几乎无毒。被认为是提供了实现高效低毒治疗肿瘤梦想的一种可能的新方案。

  • 标签: 肿瘤生长 纳米颗粒 抑止 高能 研究人员 生物效应
  • 简介:在450℃反应温度下,利用无水三氯化铝与叠氮化钠在25mL的不锈钢反应釜中直接反应,成功地在硅片衬底上制备了六方单晶氮化铝(h—AlN)纳米线有序阵列。这些纳米线呈长直线状,粗细均匀,直径约为100nm,长度均在几个微米以上。所有纳米线生长方向一致,而且与硅片衬底垂直。经过分析,纳米线由气液固机制生长而成.

  • 标签: 六方单晶氮化铝 纳米线阵列 气液固机制
  • 简介:以三氯化铝和叠氮化钠为原料,利用复分解反应法在温度为650℃条件下反应3h,成功地制备出呈灰白色粉末的一维单晶氮化铝纳米材料,通过对样品进行XRD、TEM和SAED测试,结果表明,样品为表面光滑的长直形圆柱状六方结构的氮化铝,直径为50nm左右,长度在几个微米以上,晶格常数分别为a=0.268nm,c=0.498nm;AlN紫外吸收谱的研究表明,AlN样品在202nm处具有一个尖锐吸收峰,其对应禁带宽度值约为6.14eV,并采用气-固(VS)生长机理、择优取向原理对一维单晶纳米线的生长进行了解释。

  • 标签: 一维氮化铝纳米线 特性表征 生长机理 择优取向
  • 简介:在Si/SiO2衬底上将磁控溅射镍膜作为催化剂,利用化学气相沉积制备了大面积连续的石墨烯薄膜,得到的石墨烯为1~15层。将石墨烯薄膜迁移到玻璃衬底和Si/SiO2衬底上,测量了薄膜的可见光透过率和薄膜电阻,并讨论了石墨烯作为透明导电电极在光电器件上的应用。

  • 标签: 磁控溅射 石墨烯 化学气相沉积 镍催化剂
  • 简介:美国赖斯大学开发出一种将碳纳米管切成籽晶用于生长新纳米管的方法,此项发现有可能将来发展成大批量以籽晶生长各方面急需的纳米晶的工艺。纳米晶籽晶长约200nm、宽为1nm,其长度与直径比例大致与16英尺的橡胶软管相当。切割后的籽晶经过一系列化学处理。

  • 标签: 碳纳米管 籽晶 生长 美国赖斯大学 橡胶软管 化学处理
  • 简介:福建物质结构研究所中科院光电材料化学与物理重点实验室叶宁研究员领导的课题组在国家自然科学基金和中科院重要方向项目的资助下,以同样是具有平面三角形结构的碳酸盐为研究对象,通过精确控制晶格中碱金属和碱土金属阳离子的相对大小,实现了CO,结构基团共面平行排列,获得了一系列非线性光学效应为3~4倍KDP的系列碳酸盐晶体

  • 标签: 碳酸盐 单晶生长 分解温度 福建物质结构研究所 国家自然科学基金 非线性光学效应
  • 简介:日本筑波大学生物环境系蓑田步助教等人发现,生长在日本草津、登别等硫酸性温泉中的红藻可有效吸收强酸性金属废液中含有的低浓度(0.5-5ppm)稀土。在适当条件下对红藻进行培养,红藻细胞内部即可积蓄稀土。只要具有细胞生存的条件,就可有效回收微生物回收法难以回收的酸性溶液中的低浓度稀土。

  • 标签: 强酸性 稀土 红藻 吸收 温泉 生长
  • 简介:在高温高压下的氮化锂-六方氮化硼(Li3N-hBN)体系中合成立方氮化硼(cBN)单晶,通过表征实验样品发现,生长界面处的相结构是由hBN、cBN微颗粒和硼氮化锂(Li3BN2)组成的,大颗粒cBN单晶通过吞并生长界面周围的cBN微颗粒进行生长,生长界面中的硼和氮原子的电子结构从sp2逐渐转变为sp3,根据结果推断,高温高压状态下,在立方氮化硼合成过程中,cBN更有可能是在Li3BN2的催化下由hBN直接转变而来.

  • 标签: 立方氮化硼 生长界面 静态高温高压法 HRTEM XPS 生长机理
  • 简介:运用动力学蒙特卡罗方法模拟两种原子组成的薄膜外延生长时形成纳米团簇的过程。通过分析原子相互作用能和相分离的关系,发现动力学影响对纳米团簇的形貌起主导作用。给出原子发生分离时相互作用能满足的条件为(EAA+EBB-2EAB)〉0,动力学MonteCarlo模拟结果也同样显示,在适当高的温度范围内,当两种原子的相互作用能满足(EAA+EBB-2EAR)〉0条件时,分子外延薄膜生长会趋于相分离进而形成纳米团簇。

  • 标签: 动力学蒙特卡罗模拟 处延生长 纳米团簇 相分离
  • 简介:采用金属有机化学气相沉积法在Si(111)衬底上生长了AlN外延层。高分辨透射电子显微镜显示在AlN/Si界面处存在非晶层,俄歇电子能谱测试表明Si有很强的扩散,拉曼光谱测试表明存在Si-N键,另外光电子能谱分析表明非晶层中存在Si3N4。研究认为MOCVD高温生长造成Si的大量扩散是非晶层存在的主要原因,同时非晶Si3N4层也将促使AlN层呈岛状生长

  • 标签: 金属有机化学气相沉积 氮化铝 非晶层
  • 简介:据报道,近期,同济大学物理科学与工程学院唐慧丽副教授、徐军教授团队采用自主知识产权的导模法技术成功制备出2英寸高质量氧化镓(β-Ga2O3)单晶。获得的高质量β-Ga2O3单晶,X射线双晶摇摆曲线半高宽27”,位错密度3.2×10^4/m^2,表面粗糙度〈5A,该项研究成果将有力推动我国氧化镓基电力电子器件和探测器件的发展。

  • 标签: 单晶生长 宽禁带半导体 β-Ga2O3 自主知识产权 电力电子器件 表面粗糙度
  • 简介:在液相环境中,利用纳秒(ns)脉冲激光器轰击消融铬掺杂ZnSe(Cr^2+:ZnSe)微米颗粒,制备出Cr^2+:ZnSe纳米粒子,扫描电镜以及X射线衍射检测,结果显示,制备所得的粒子为平均尺寸为50nm的ZnSe闪锌矿结构纳米粒子。基于Cr^2+:ZnSe纳米粒子,观察到中心波长为2180nm、阈值为0.4mJ/pulse的随机激光效应。相比于Cr^2+:ZnSe晶体激光器,纳米粒子随机激光的中心波长发生了约170nm的蓝移,Cr^2+:ZnSe纳米粒子的光致发光寿命也比Cr^2+:ZnSe晶体要短。

  • 标签: Cr^2+:ZnSe 随机激光 纳米材料 中红外激光
  • 简介:纳米沸石的合成通常以水热法为主,此外尚有模板法、气固相法和微波加热法等不同方法合成的范例。低聚合度硅源、较高的碱度、较低的固液比和硅铝比、较低的晶化温度、合适的添加剂类型以及较高的添加剂用量有助于纳米沸石的形成;无钠碱源形成分立的纳米沸石胶体,有钠碱源形成聚集态纳米沸石。

  • 标签: 纳米沸石 合成方法 影响因素
  • 简介:为了探讨镁合金微弧氧化的动力学影响因素,研究了氧化电压、氧化电流、电解液等对膜层生长的影响,发现这几个因素都是膜层生长的关键因素,在我们的工艺条件下,电流密度范围在0.2~0.3A/cm^2之间能获得较好的膜层。

  • 标签: 镁合金 微弧氧化 动力学 膜层 影响因素