简介:为建立基于烟叶麦角甾醇含量结合近红外光谱分析技术的初烤烟叶霉变预警模型,以2015年和2016年云南5个地区2个等级(B2F和C3F)初烤烟叶为研究对象,调节烟叶含水率为18%,在28℃,RH80%条件下以30天为实验周期,进行烟叶霉变实验。每3天取一次样,采集近红外光谱数据并检测样品麦角甾醇含量。建立第0d初烤烟叶样品近红外光谱主成分监测模型并提取HotellingT-2统计量,预测第3天至30天初烤烟叶样品近红外光谱数据的HotellingT-2统计量,对比分析肉眼观察和近红外类模型对烟叶霉变的预警效果。结果表明:1)烟叶霉变过程中,麦角甾醇含量逐渐增加后逐渐降低,当肉眼可见时,麦角甾醇含量较初始值增加4.66-23.38倍;2)基于上述监测模型,13个霉变烟叶样品中,提前预警天数为6天的样品2个,提前预警天数3天的样品7个,当天预警的样品4个,7个未发生霉变烟叶在30天的监测周期内均未出现预警,预测准确率100%。以上结果表明该方法能方便快速地实现对初烤烟叶霉变的预警,具有较好的实用价值。
简介:为实现醇化烟叶中霉变烟的自动在线精选,设计了基于机器视觉的霉变烟在线检测系统。该系统通过高速线阵CCD动态获取烟叶图像,采用MSD微结构描述算法提取烟叶图像颜色、纹理特征,基于神经网络集成分类算法,通过合格烟叶样本和霉烟样本的训练学习,实现霉变烟的在线检测识别。经过测试,该检测算法对霉烟图像样本的测度为0.918。在线检测试验结果显示,采用霉烟靶物单独过料时,机器视觉系统对霉烟的平均在线识别率在95%以上;将霉烟靶物与合格烟片混掺过料时,系统对霉烟的平均识别率在87%以上。研究结果表明,机器视觉方法用于醇化后烟叶中霉变烟的在线精选是可行的。
简介:为探讨不同氮肥形态下叶片组织结构的生长发育特点,明确氮肥形态对焦油释放量的影响。大田试验设计了5种不同氮肥形态的配比,对5个不同时期的烤烟叶片组织结构进行观察,并测定单料烟的焦油释放量。结果表明:1)初步研究表明,单料烟焦油释放量有随着氮肥中硝态氮比例的提高而降低的趋势;2)硝态氮占优势的处理比只用铵态氮处理的叶片、栅栏组织和海绵组织厚度大;3)相关分析表明:焦油释放量与叶片厚度和海绵组织厚度呈显著负相关,与栅栏组织厚度呈不显著的负相关。通径分析表明:栅栏组织厚度对焦油释放量有直接作用,施用不同形态的氮肥,可以影响焦油释放量。
简介:运用四种不同的光谱范围选择方法来建立烟草中水溶性糖的近红外定量模型,发现模型的交互验证系数、交互验证均方差和预测均方差有明显的差异。通过对烟草中水溶性糖的分子结构分析,结合傅里叶变换近红外漫反射光谱的特性,初步确定烟草水溶性糖近红外定量模型的建模光谱范围,以交互验证系数和交互验证均方差为评价指标进一步优化光谱范围,可以得到烟草水溶性糖在近红外定量模型中的最佳光谱范围为3850-5010cm^-1、5720-7010cm^-1和7760-7980cm^-1,总糖和还原糖定量模型的交互验证系数、交互验证均方差和预测均方差分别为0.989、0.787、0.565和0.982、0.801、0.693。