简介:在对2000-2012年粮食产量数据与耕地面积数据进行动态分析的基础上,引入敏感度分析模型,对2000年以来云南粮食生产与耕地变化的动态关系进行定量评估,从而揭示粮食产量对耕地变化的敏感性特征。研究表明,2000-2003年粮食产量对耕地变化的敏感程度小于0,为不敏感状态;2004-2005年粮食产量对耕地变化的敏感程度为0.11,为低度敏感状态;2006-2012年粮食产量对耕地变化的敏感程度迅速增大到35.68,为高度敏感状态,说明2006年以来粮食产量对耕地变化的敏感度很高,耕地面积的较小变动会造成粮食产量的较大波动。因此,严格区域耕地保护,实行耕地“补占平衡”政策对于保证区域粮食安全具有重要意义。
简介:耕作位移和耕作侵蚀主要是在重力作用下,由耕作工具触发的土壤侵蚀;是造成坡耕地土壤重新分布和坡耕地土壤侵蚀的重要过程之一;对坡面地形演化、土壤性质改变、土壤养分流失与重新分布、土地生产力降低、土壤碳储存变化等都有重要影响。在以往研究的基础上,总结耕作侵蚀的基本过程和机制、研究方法、影响因素和侵蚀速率的研究进展,讨论目前研究中的不足与未来可能的研究方向。不同于风蚀和水蚀,耕作侵蚀发生的动力条件是人为影响,而非自然发生的降水或风力;因而,其侵蚀过程和机制、研究方法、影响因素、侵蚀速率分布等均不同于风蚀和水蚀。耕作侵蚀主要受人为和自然因素的影响,人为因素驱动耕作侵蚀发生,坡面是耕作侵蚀的地形基础。人为因素主要有耕作工具特性、耕作方向、速度和深度等;自然因素主要包括坡面的形状和尺寸、地形、坡度和土壤性质等。强烈的耕作侵蚀主要发生在坡面上部和坡面曲率剧烈变化的部位。耕作侵蚀研究主要通过基于示踪技术的实测方法,结合模型预测开展。由于耕作侵蚀、风蚀和水蚀的研究方法各成体系,通用方法较少,因而,多营力侵蚀研究难度巨大。以^137Cs为代表的核素在研究水蚀、风蚀和耕作侵蚀中均表现出独特的优势,为区分多营力侵蚀中各种侵蚀的速率和贡献提供了新的可能。
简介:为了给研究区域农业生产的合理布局及生态恢复方案提供依据,以刘家峡库区北部东乡县典型小流域碾子沟和库区南部积石山县典型小流域三坪沟为研究对象,采用野外调查和遥感解译的方法,利用ArcGIS、ArcView等软件对航摄地形图进行目视解译,分析土地利用结构、人工干扰方式和强度等对景观空间格局的影响特征。结果表明:1)库区南北景观基质均为未利用土地(主要指荒沟荒坡),土地利用难度大;2)库区北部景观斑块特征较南部复杂,南部较北部更适合农业生产;3)库区南部景观多样性较北部高,景观类型丰富,而库区北部由于降水少,景观总体受人类活动干扰小,连通性高;4)在土地利用结构和农村产业结构调整方面,库区南部应以加强复合生态农林业生产为主,北部应加强陡坡退耕种草、农牧业协同发展,并实行封育保护,促进生态环境恢复。
简介:土壤-植被-大气传输(SVAT)模型对于研究大气水、植物水、地表水、土壤水和地下水的相互作用和相互关系、植物耗水过程与生态需水规律、生态系统与局地气候的反馈机制、土壤水分与植被的相互作用机制,以及生态环境的恢复与重建具有十分重要作用。SVAT模型经过“水桶”模型、生物物理学模型以及生物化学模型3个阶段约半个世纪的发展,已由最初的单层模型发展到双层模型、多层模型,取得了很大的进展。该文总结了SVAT模型主要水热过程的参数化方案,模型的应用研究、比较以及参数化方案的改进,并提出下垫面不均匀性、模型的简化、模型的全面性、模型的验证和比较等亟待进一步改进和完善的问题。
简介:对戈壁表面砾石粒径的研究,可帮助了解戈壁特征,分析戈壁造成自然灾害的原因,认识沙粒迁移、沙漠扩展以及指导防沙工程。本研究结合野外调查,分析噶顺戈壁洪积扇21个样点砾石的粒度组成、平均粒径、分选系数、偏度和峰度等粒度特征。结果表明:1)受洪水、重力与风蚀等作用的影响,戈壁地表砾石均以中砾为主(66.35%~95.04%)。海拔最高处以石质为主(85.54%),平均粒径值为-9.09(545.2mm)。砾石质量分数呈现出随海拔增加,中砾质量分数降低,而粗砾质量分数升高的趋势。2)粒度特征为:平均粒径值变化范围为-9.09(545.2mm)~-6.15(153.9mm);除样点12为分选中等外,其余样点的均处于分选较好以上水平(0.28~0.53);偏度以负偏为主导(80.95%),地表以细砾和中砾等细粒径砾石为主;峰度中,宽平和很宽平占整体的57.14%,中等占23.81%,尖窄和极尖窄占19.05%,显示砾石分布相对较均匀,在不同位置的砾石,具有微弱的地表过程差异性。3)分选系数与平均粒径之间,无明显的相关关系;而偏度与平均粒径间,存在正相关关系。研究结果对物源的岩性及戈壁发育环境具有重要的指示意义。
简介:降雨形成的径流是产生坡面土壤侵蚀的主要动力来源,径流流速是土壤侵蚀模型的重要参数之一。为研究电解质示踪法测量坡面水流流速过程中电解质优势流速和水流流速的关系,本研究利用实验水槽,在坡度4°、8°、12°,流量12、24、48L/min条件下,于距离电解质注入位置0.3、0.6、0.9、1.2、1.5m处放置探针测量电解质传递过程,计算不同工况下各测量断面的电解质优势流速。结果表明:流量对电解质优势流速的影响大于坡度对其影响,电解质优势流速随距离增加而增大,采用指数函数拟合计算得到的电解质优势流速随距离的变化过程,得到稳定的电解质优势流速,即水流优势流速,其范围在0.241~0.568m/s之间。随坡度和流量的增大,水流优势流速均增大。流量对水流优势流速增长的影响大于坡度对其的影响。不同坡度和流量条件下,水流优势流速与平均流速基本一致,二者的比值为1.007,水流优势流速与最大流速的比值为0.774,平均流速与最大流速的比值为0.776,符合坡面薄层水流的流态。结果可为研究坡面薄层水流动力过程提供新的计算方法和参考数据。