学科分类
/ 1
6 个结果
  • 简介:[目的/意义]为了提高体尺关键点定位准确率,猪三点云体尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间.本研究旨在通过设计关键点生成网络从猪体点云中提取出各体尺测量所需关键点.在降低显存资源需求的同时提高测量关键点定位效果,提高体尺测量的效率和精度.[方法]针对猪三表面点云进行体尺测量,提出了一种定位猪体尺关键点的模型Pig Back Transformer.模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块...

  • 标签: Pig Back Transformer三维点云体尺自动测量测量关键点定位深度相机自注意力机制
  • 简介:摘要 : 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于 WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度 GNSS定位系统前提下的作业面积的计算方法、 GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

  • 标签: 传感技术 数据融合 管理平台 大田农业机械 物联网 GNSS
  • 简介:摘要 : 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数 R2均大于 0.999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了 0.1。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

  • 标签: 水肥一体化 电导率 感知 精准配比 系统建模 多项式拟合
  • 简介:[目的/意义]随着自动化、数智化技术的快速发展及其相关技术在肉牛养殖上的逐步推广利用,肉牛智能化养殖技术研究也取得了一定进步.肉牛的生理指标如运动量、体温、心率、呼吸频率,以及反刍量等变化反映了肉牛的健康或亚健康状态.基于多种传感器采集到的数据以及机器学习、数据挖掘及模型化分析等技术的利用,肉牛的生理指标可由智能感知装备尤其接触式设备自动获取并用于发情、产犊、健康和应激的监测.[进展]针对肉牛养殖过程生理指标的智能监测技术及其利用价值进行了系统分析,分析了生理指标监测技术在实际生产中的应用现状,总结了肉牛生理指标监测的难点和挑战,并提出了未来发展方向.[结论/展望]肉牛生理指标的智能监测与利用既提高数据采集的时效性和准确性,有利于提高一线人员工作效率,促进肉牛养殖的智能化水平及健康养殖水平.结合当前中国肉牛实际饲养..

  • 标签: 肉牛生理指标人工智能智能监测传感器数据融合
  • 简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二关键点坐标与深度图中对应深度值相结合,得到关键点三坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...

  • 标签: 蒙古马体尺测量卷积神经网络注意力机制三维点云处理YOLOv8n-pose
  • 简介:摘要 : 光是植物进行光合作用的主要能量来源,光照好坏直接影响作物的产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整的问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性的设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统和补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯的动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株的株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03%和 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51%和 36.03%;在一个月的采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了 0.28和 1.39 kg/m2,经济效益分别增加了 2.82和 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。

  • 标签: 设施光环境 ZigBee 黄瓜叶位 立体补光 智能调控 PWM