简介:摘要 : 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于 WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度 GNSS定位系统前提下的作业面积的计算方法、 GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
简介:[目的/意义]冷链配送碳排放动态预测是企业碳排放精准评估及其绿色信用等级评定的重要依据.本研究面向车辆碳排放受路况信息、行驶特征、制冷参数等多因素影响,提出一种融合多源信息的冷藏车辆碳排放动态预测模型.[方法]基于道路车辆数量与像素面积占比表征路况信息,构建基于改进YOLOv8s的路况信息识别模型,并以路况信息、行驶特征(速度、加速度)、货物重量、制冷参数(温度、功率)等为输入,构建基于改进iTransformer的冷藏车辆碳排放动态预测模型.最后与其他模型展开对比分析,分别验证路况信息识别与车辆碳排放动态预测的精度.[结果]改进的YOLOv8s路况信息识别模型在精确率、召回率和平均识别精度上分别达到98.1%、95.5%和 98.4%,比YOLOv8s分别提高了 1.2%、3.7%和 0.2%,参数量和运算量分别减少了 12.5%和31.4%,检测速度提高了5.4%.改进的iTransformer...
简介:摘要 : 植物表型组学研究正逐渐向综合化、规模化、多尺度和高通量的方向快速发展。本文首先介绍了植物表型研究的最新动向。然后针对室内表型监测平台的特点和各类室内表型针对的表型性状进行了系统介绍,包括产量、品质、胁迫抗性(包括干旱、抗冷热、盐胁迫、重金属和病虫害)等。在此基础上,本文还根据通量、传感器集成度和平台大小等把一些国内外流行的室内植物表型平台进行了分类,并介绍了这些室内表型平台在植物研究中的应用情况。同时,本文还介绍了室内表型数据的管理和解析方法。最后,本文着重讨论了室内表型平台的发展方向,并结合中国植物研究的实际情况对表型组学在中国的发展提出了展望,以期为中国植物表型研究提供指导和建议。
简介:摘要 : 冠层光截获能力是反映作物品种间差异的重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同的小麦品种在 5个生育期的三维冠层场景,记录了从原始冠层结构中提取的绿色叶面积指数( GAI)、平均倾角( AIA)和散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟的激光雷达( LiDAR)模拟实验,生成了对应的三维点云数据。基于模拟的点云数据提取了其高度分位数特征( H)和绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF和 H+GF)输入到 FIPARdif、 GAI和 AIA的反演模型。结果表明,对于 GAI、 AIA和 FIPARdif,预测精度从高到低对应的点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性的估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif和 GAI的估算均获得了满意精度, R2分别为 0.95和 0.98,而 AIA的估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法的实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发的能力,展示了高通量 LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力。