简介:摘要 : 光是植物进行光合作用的主要能量来源,光照好坏直接影响作物的产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整的问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性的设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统和补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯的动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株的株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03%和 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51%和 36.03%;在一个月的采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了 0.28和 1.39 kg/m2,经济效益分别增加了 2.82和 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。
简介:摘要 : 冠层光截获能力是反映作物品种间差异的重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同的小麦品种在 5个生育期的三维冠层场景,记录了从原始冠层结构中提取的绿色叶面积指数( GAI)、平均倾角( AIA)和散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟的激光雷达( LiDAR)模拟实验,生成了对应的三维点云数据。基于模拟的点云数据提取了其高度分位数特征( H)和绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF和 H+GF)输入到 FIPARdif、 GAI和 AIA的反演模型。结果表明,对于 GAI、 AIA和 FIPARdif,预测精度从高到低对应的点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性的估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif和 GAI的估算均获得了满意精度, R2分别为 0.95和 0.98,而 AIA的估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法的实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发的能力,展示了高通量 LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力。