简介:近年,以深度学习技术为代表的人工智能(AI)正席卷各行各业,而AI框架有多种,多数采用深度卷积神经网络(CNN)技术结合迁移学习进行训练,虽然在皮肤AI研究中取得长足进展,但其研究结果未能真正走出实验室进入临床应用。制约这些因素主要是缺乏高质量的皮肤疾病图像的大型数据集。本文针对皮肤科常见的图像采集方法,包括临床摄影图像、皮肤镜图像、反射式共聚焦激光扫描显微镜(RCM)图像、皮肤B超图像和组织病理图像的质量要素进行探讨和述评,希望对解决因皮肤图像质量的问题而影响AI研究进展的瓶颈问题能有所帮助。
简介:目的:评价皮肤CT特征对白癜风分期的效果。方法:纳入116例白癜风患者,采用VIDA、皮肤CT特征和临床特征评价其分期,比较各方法的分期效果、灵敏度和特异度。结果:以皮肤CT特征或临床特征进行分期与以VIDA进行分期的结果无明显差异(χ^2值分别为0.66、0.12,P值均〉0.05);以VIDA分期为标准诊断,皮肤CT特征区分稳定期和进展期的灵敏度为100%,特异度为87.5%;而临床特征区分的灵敏度为97%,特异度为96%,前者灵敏度明显高于后者(χ^2=5.54,P=0.019),但两组特异度无明显差异(χ^2==1.93,P=0.165)。结论:对于白癜风分期诊断,皮肤CT特征表现出更好的灵敏度,值得临床推广应用。
简介:背景:有经验的皮肤科医师使用临床诊断标准(通常为ABCD规则)早期诊断黑色素瘤的正确率可达64%~80%,诊断黑色素瘤的自动化系统仍被认为是一种实验性方法,只能作为肉眼诊断的辅助措施。为帮助早期诊断黑色素瘤,作者开发了一种图像处理系统帮助鉴别黑色素瘤与黑色素细胞痣,并建立了一种明确黑色素瘤发生率的数字模式。方法:分析132处黑色素细胞皮损(23处黑色素瘤及109处黑色素细胞痣)的数字图像特征,包括几何特征、颜色、颜色纹理。共分析了所有皮损的43个特征变量:几何形状、颜色纹理、边界锐度、颜色变量等。由于任何多阶式变量选择法中存在变量多重共线性均可导致严重错误,因此采用单变量logistic回归分析法及“-2loglikelihood”检测和Spearman秩相关系数,以排除不适当的变量。最初“-2loglikelihood”和非参数Spearmanp选择了5个变量进入多变量预测模式,随后5变量模式被削减为3变量模式,且验证了每种模式的性能。用“jackknife”法验证3变量模式,并通过受试者工作特性(ROC)曲线图比较其与5变量模式的精确度,结论表明3变量模式的鉴别能力未受影响。结果:并非全部变量均对此模式有用,故逐渐剔除至剩下3个有意义的协变量。合并几何形状、颜色、颜色纹理等独立协变量参数,计算预测性公式,用于黑色素瘤的预测。此模式诊断黑色素瘤的灵敏度为60.9%,特异度为95.4%,总精确度达89.4%(概率水平O.5),有8%的假阴性结果。结论:通过数字图像处理系统和发展数字预测模式,采用多变量logistic回归分析法高精度地鉴别黑色素瘤与黑色素细胞痣是可行的。此模式早期诊断黑色素瘤具有可行性。为预测组织学确诊前未能诊断的黑色素瘤,没有必要使用昂贵或复杂的设备,仅使用价格合适的便�