简介:病理性疼痛,包括由组织损伤诱导的炎症性疼痛和神经损伤诱导的神经病理性疼痛,是神经元可塑性改变的产物,其中重要的一点是伤害性刺激的持续传入使骨髓内伤害性神经元的兴奋性增强,此中枢的敏化是由于细胞内酶级联反应导致主要的膜受体和通道的磷酸化,引起活性依赖性的可塑性改变所致;或以转录依赖性的方式使递质、离子通道表达数量或结构上发生长时间的改变所致。各种信号转导通路可进行翻译后加工的调节和某些关键基因产物的转录后调节来调控长时程的痛觉过敏,其中MAPK的激活是中枢敏化的关键。因此对伤害性神经无信号转导通路的特异性药物干预可能作为一种新的病理性疼痛的治疗手段。
简介:目的:比较心输出量对血气分配系数不同的两种吸入麻醉药安氟醚,笑气摄取的影响。方法:应用吸入麻醉药计算机模型-吸入麻醉执行者,固定VT700ml/min,Vf10bpm,新鲜气体流量2L/min情况下,模拟1.6%安氟醚、50%笑气对年龄40岁、身高175cm,体重70kg的标准男子实施麻醉。1组模拟麻醉诱导期心输出量变化对摄取量的影响,记录不同心输出量(正常心输出量及心输出量分别下降或升高30%)状态下,吸入麻醉开始后1、3、5、10、15、20、45、75min环路气麻醉药浓度(Fi),呼气末麻醉药浓度(Fa);2组模拟正常心输出量下麻醉45min后,上述心输出量改变对摄取的影响,记录心输出量改变后1、3、5、10、15、20、45、60、75min的Fa、Fi,并计算Fa/Fi、1-Fa/Fi。结果:随着心输出量增加,安氟醚和笑气的Fa/Fi与时间关系曲线均表现为下移,而1-Fa/Fi与时间关系曲线上移。与笑气比较,不同心输出量情况下安氟醚各曲线间较为离散,而笑气各曲线相对集中。结论:心输出量对麻醉气体的摄取有直接的影响,心输出量增加,摄取增加,反之亦然,使用计算机模型模拟能直观地反映心输出量对麻醉药物摄取的影响。临床麻醉过程中,应注意麻醉药物对心肌的抑制和不同病理状态下心输出量的变化对吸入麻醉深度的影响。
简介:目的:模拟中国人氟化吸入麻醉药诱导过程。方法:应用GasMan(R)Version2.1forWindows(TM)软件完成模拟。模拟参数设为:体重60kg;人体分为肺泡、血液、血流丰富组织(VRG)、肌肉和脂肪组织;每分肺泡通气量为4L,心输出量为5L,肺泡功能残气量为2.5L;吸入麻醉以半紧闭回路(回路容积为8L);模拟地氟烷、七氟烷、异氟烷和安氟烷在新鲜气体流量为3L/min,挥发罐输出浓度(FD)以6%地氟烷、2%七氟烷、1.15%异氟烷、1.68%安氟烷条件下麻醉药吸入浓度(F1)和肺泡麻醉药浓度(FA),计算FA/F1比值。模拟采用的血/气及组织/气分配系数分别取自文献报道的中国人和西方白种人的结果。数据采集时间为开启挥发罐后的1min、2min、3min、5min、10min、15min、25min、45min和75min。比较吸入麻醉药的FA/F1升高速度在中国人和白种人之间的差异。结果:地氟烷FA/F1在45min之前为中国人低于白种人。对于七氟烷、异氟烷和安指烷,中国人的FA/F1在15min之后高于白种人。结论:吸入麻醉药的分配系数是导致FA/F1在15min之前明显低于白种人,15min后逐渐趋于相同。而对于七氟烷、异氟烷和安氟烷来说,两个人种的差别主要表现在中国人的肌肉/气分配系数较低。模拟结果提示在诱导开始15min之后,这三种麻醉药在中国人的FA/F1明显高于白种人。
简介:目的:研究七氟烷(Sevoflurane)诱导神经元血红素氧合酶-1(HO-1)基因表达的信号转导通路,探讨七氟烷脑保护机制。方法:将培养7d的新生Wistar大鼠海马神元随机分为5组:正常培养组(C组)、氧糖剥夺组(D组)、2%七氟烷+氧糖剥压组(S1组)、4%七氟烷+氧糖剥压组(S2组)、4%七氟烷+U-012+4%七氟烷+氧糖剥压组(U组)。C组和S2组神经元分别给予2%或4%七氟烷预处理60min后同D组处理。U组在神经元给予4%七氟烷处理同时在培养液中加入U-0126使其终浓度为10μmol/L后同S2组处理。收集神经元进行HO-1-mRNA和ERK1/2、Nrf2、AP-1和HO-1蛋白表达的检测,检测神经元的存活率和凋亡率。结果:与C组比较,D组神经无HO-1蛋白表达增加(P〈0.05),ERK1/2,Nrf2和AP-1蛋白表达增加(P〈0.05),神经元存活率降低、凋亡率增加(P〈0.01).与D组比较,S1组神经元HO-1-mRNA和HO-1蛋白表达增加(P〈0.01),ERK1/2和Nrf2蛋白表达增加(P〈0.01),AP-1蛋白表达变化不明显(P〉0.05),经元存活率长高、凋亡率降低(P〈0.01).与S2组比较,U组神经元HO-1-mRNA和HO-1蛋白表达降低(P〈0.01),ERK1/2和Nrf2蛋白表达降低(P〈0.01),AP-1蛋白表达表达变化不明显(P〉0.05),神经元存活率降低、凋亡率增加(P〈0.01).结论:Sevoflurane通过ERK1/2/Nrf2信号通路诱导神经元HO-1-mRNA表达,抑制氧糖剥夺神经元的凋亡。