简介:摘 要:锅炉作为重要的承压设备,其处于高温高压环境下运行,具有较强的危险性。因此需要针对锅炉设计、制造、使用和维修等各个环节实施严格的检验,并运用合理的检验技术手段来保证锅炉的使用性能。文中从锅炉检验的主要内容入手,分析了锅炉检验的要求,并进一步对锅炉检验各环节的质量控制进行了具体的阐述。
简介:摘要:我国特种设备检验检测机构起步晚,发展仍不成熟且具有强烈的政府色彩,内部机构设立更是具有重复建设的弊端,而特种设备作为高风险设备,具有较大的潜在危害性,因此,对我国特种设备检验检测机构进行改革和进一步发展十分必要。特种设备运行的介质环境复杂,一旦发生事故必将带来严峻的社会安全问题和财产损失,对其进行检验检测是保障我国经济社会健康发展必不可少的环节,这对我国特种设备检验检测机构的发展也提出了要求。如何实现机构的高效率发展,保证其在检验检测环节的重要作用,本文基于石油化工特种设备检验中无损检验技术的应用展开论述。
简介:摘要:随着我国社会主义市场经济的飞速发展,我国压力容器的数量逐年递增。压力容器顾名思义是能够承受一定压力的一种密闭容器,它的用途比较广泛是石油化工、航空航天、核电等领域中必不可少的设备,压力容器的发展速度直接影响一个国家的工业化进程,在对经济发展领域中起着至关重要的作用,压力容器的安全使用也关系到整个国民经济的发展与民生安全,压力容器的运行环境都是出于各种复杂的运行环境,经常与其他设备连接配合使用,压力容器在制造、安装、运行中都会因为各种原因导致容器在使用过程中产生各种缺陷,这些缺陷在压力等操作因素反复变化下使得压力容器达到使用极限最终引起压力容器产生韧性破裂、疲劳、腐蚀、蠕变等破坏,这些缺陷在很大程度上直接威胁着整个系统的安全稳定运行,因此必须防止压力容器产生缺陷。另外,压力容器在制造过程中,会涉及焊接问题,一旦压力容器焊接工艺、焊接人员操作出现问题,都会产生缺陷影响压力容器的使用,最终导致安全事故的发生。因此,针对上述压力容器缺陷情况,必须熟悉压力容器各个部位的运行情况,及时检查压力容器本体质量,还需要对压力容器常见的焊接缺陷进行识别,并且了解缺陷产生的原因,这样才能预防和控制缺陷,降低压力容器使用的安全事故,获得更好的经济效益。
简介:内容摘要:全自动生化分析仪校准规范颁布实施以来,诸多计量工作者都在研究校准过程中出现的问题。笔者在经过系列全自动生化分析仪校准过程中,对于生化分析仪校准规范中出现的一系问题进行归纳总结 。 1 综述 2012年 5月 30日 JJG464-2011《半自动生化分析仪校准规范》实施,规范不适用于全自动生化分析仪的检定,自此诸多学者都在研究全自动生化分析仪的计量特性溯源工作。 2019年 3月 25日,国家市场监督管理总局发布实施 JJF1720-2018《全自动生化分析仪校准规范》实施,在校准规范中阐述了“吸光度示值误差、吸光度重复性”的校准方法,但大多数全自动生化分析仪在具体的计量校准中,怎样查看吸光度值仪器不同操作程序不同,一些仪器需要进入特定界面才能查看吸光度反应曲线、读取吸光度值。所以,对于全自动生化分析仪吸光度校准方法进行研究具有一定的实用意义。 2 全自动生化分析仪的原理 全自动生化分析仪主要依据朗伯 -比尔定律进行定量,朗伯 -比尔定律的数学表达式如下: 式中: A——吸光度; I——透射光强度; I0——入射光强度; T——透过率; k——物质的摩尔吸光系数, L·mol-1·cm-1; l——光程, cm; c——物质的浓度, mol/L。 全自动生化分析仪一般由加注、控温、反应、检测、清洗等多系统组成,根据检测方式不同可以分为分立式和流动式,分立式是指每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成,流动式是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。根据光路分光形式的不同可以分为前分光或后分光,前分光仪器将光源发出的光先经单色器分光后成为单色光,单色光被比色杯内待测溶液吸收,通过检测器测量吸收前后单色光的强度,可以计算出待测溶液的吸光度;后分光仪器先将一束复合光照到比色杯上,再用光栅分光,在光栅后面采用二极管阵列检测器进行检测。不论前分光的仪器,还是后分光的仪器,都是根据郎伯 -比尔定律计算出待测物的浓度。 3 全自动生化分析仪吸光度校准 医学临床中,全自动生化分析仪通过测定吸光度计算反应溶液中待测物的浓度。一般情况下,在仪器校准界面,空白校准选择 Blank;一点终点法、两点终点法、连续监测法及部分比浊(少于两个浓度点)一般选择 2 point;多于两个以上的浓度点选择多点校准( Full)。在计量工作中,我们通过测定特定波长的吸光度值来衡量仪器吸光度准确性的,进而衡量仪器的计量性能。 3. 1吸光度标准物质的选取 JJF1720-2018《全自动生化分析仪校准规范》中对吸光度标准物质规定为“应该使用经国家计量行政主管部门批准颁布的标准物质”,我们需要选取具有标准物质证书 GBW( E)的标准物质例如选取中国计量科学研究院定值的吸光度标准溶液 GBW(E)130260和 GBW(E)130261。 3. 2测定吸光度值 在现行下的诸多型号全自动生化分析仪中,试剂中位置是预先设定,样品位可以根据需求排序,清洗机构无法简单拆卸的,我们采用的普遍方法是样品位和试剂位的溶液中均加入吸光度标准溶液,在这里我们要首先搞清楚试剂位设置的是单试剂还是双试剂,准确记录试剂位位置号,不能放错位置。 3. 3检测项目的选择 JJF1720-2018《全自动生化分析仪校准规范》 7.2条中表述为“新建或编辑一个检测项目使其反应溶液均来自样品位和试剂位的吸光度标准溶液”。但是新建或编辑一个检测项目对于计量检定工作者或临床医务工作者操作性不强,不同厂家不同型号的全自动生化分析仪方法不尽相同。我们可以按照校准规范要求,查看全自动生化分析仪试剂盘中各个项目的设定参数,选定符合校准规范条件的项目作为检测项目。我们在这里需要注意的是在选取检测项目的时候要注意选定项目波长值为 340nm,双试剂的选取主波长为 340 nm的项目,如果有单试剂测试项目为 340nm,我们优先选取单试剂测试项目;波长的设置是根据厂家试剂来确定,我们需要每次开展校准前查看参 数,不可以经验选取。以东芝 TBA-120FR系列生化分析仪为例,其 ALT(或 AST)试剂位即可符合校准规范规定的条件,我们即可按照要求用空白、干净,我们也可以在规定试剂盒中插入一次性塑料试管,防止交叉污染,将试剂位 R1、 R2换成计量校准用标准物质,样品位放置 3个样品,按照临床设置参数进行测试,测试完毕查看吸光度反应曲线,在反映数据列中读取吸光度的最大值。按照上述方法分别测试 0.5和 1.0的生化分析仪校准用标准物质(吸光度标准溶液)的吸光度值。 3 .4校准过程中吸光度测定方法的选择 JJF1720-2018《全自动生化分析校准规范》中明确要求采用终点法读取吸光度,在现行下诸多全自动生化分析仪中试剂常用方法为为终点法或者速率法,我们选取终点法。如果所有项目在 340 nm没有终点法的选项,我们可以将速率法更改为终点法,测试完毕后再还原为原临床使用参数。如果计量技术人员或者临床医务工作者能够清楚并熟练的新建或者编辑检测项目,应优先选择新建检测项目,我们可以在空闲试剂位保存为“ JL340-0.5、 JL340-1.0”,这样便于来年校准工作方便。 3 .5 吸光度值的读取方法 JJF1720-2018《全自动生化分析仪校准规范》采用的是终点法读取吸光度,但在实际计量校准中怎样读取吸光度值是一个关键。生化分析仪临床上读取的结果是浓度 g/L,而我们需要的是吸光度,是无量纲的单位,一般用 A表示。读取吸光度的方法每个厂家仪器不尽相同,其关键是要在特定任务栏中查看反应曲线,其反应曲线表征的就是吸光度 OD的值。以深圳迈瑞生物医疗电子股份有限公司生产的 BS450型为代表的国产生化分析仪能够在操作界面直接读取反应曲线和数据,以日本东芝生产的 TBA-120FR为代表的生化分析仪的反应曲线需要在特定任务栏里,需要厂家说明书提供查看方法,再找到反应曲线后查看反映数据列。需要注意的是在这里一定要读取主波长 340 nm时的吸光度值。如果是双波长,仪器本身自带的是一个主波长和副波长之间的若干波长值,我们一定要读取特定波长,即标准物质定制波长值 340 nm处的吸光度值。以东芝 TBA-120FR全自动生化分析仪为实验对象测得实验数据如下。 表 1 340nm处吸光度示值误差实验数据 吸光度 标称值 As Ai A平均 △A 1 2 3 0.5 0.4992 0.492 0.493 0.493 0.493 -0.006 1.0 0.9973 0.992 0.992 0.993 0.992 -0.005 表 2 340nm处吸光度重复性实验数据 As Ai A平均 RSD% 1 2 3 4 0.9973 0.991 0.993 0.992 0.991 0.992 0.11 5 6 7 / 0.992 0.993 0.994 / 4 吸光度测量结果的表示 在进行全自动生化分析仪吸光度校准时,需要对结果进行不确定度评定,记录测量结果不确定度值,在校准证书中给予明确表示。 参考文献 [ 1] JJF1720-2018《全自动生化分析仪校准规范》国家市场监管总局 2018年 12月