简介:在Ogallala含水层(德克萨斯州阿马理洛附近)的水井水样中发现了苯污染物。这篇文章对该场地多级水位采样装置中使用的材料产生的污染物进行了评价。作为勘查项目的一部分,在实验室对采样装置材料进行了试验。实验室试验得出的结果表明,在两种多级水位采样器中使用的三种不同材料,在8局稳定的淋滤试验中向地下水扩散挥发和半挥发性有机化合物。尼龙-11管向地下水扩散苯(1.37微克/升)和高浓度的增塑剂N-丁苯磺酰胺(NBSA)(764毫克/升);涂有氨基甲酸脂的尼龙水井衬管向地下水扩散高浓度的甲苯(278微克/升)和一定数量的增塑剂NBSA;由尼龙/聚炳烯/聚脂合成的采样点隔离物向地下水扩散一定数量的甲苯和增塑剂NBSA。然而,在实验室试验中测出的甲苯和苯浓度低于实际地下水样中的浓度,从采样装置材料中测出的有机物浓度对反映不准确的地下水样结果报告是充分的。
简介:本文介绍了日本雄胜干热岩区(HDR;温度为200℃)实验室和野外二氧化碳储存试验结果。在试验过程中,部分二氧化碳预期与岩石发生交互作用并以碳酸盐沉淀(地质反应器;从岩石和碳酸盐沉淀物提取钙)。2007年,把二氧化碳溶解水(含有固态二氧化碳的河水)直接注入OGC-2井(从9月2日至9日)和Run#2(从9月11日至16日))。同时,也向水井中注入多种示踪剂。利用取样器(容量500m1)在深度约800m的位置收集水样,并对其化学和同位素成分进行监测。在Run#2开展试验期间,在把二氧化碳-水注入OGC-2井2天后,向OGC-1井注入河水。在开展野外试验期间,利用“现场分析”技术测定方解石的分解或沉淀速率。把由钛棒或金薄膜覆盖的方解石晶体置于晶胞中,并嵌入晶体探测器内。随后把这种晶体探测器下入OGC-2井内,并在特定深度把水样导入探测器。l小时后取出探测器,并利用最新开发的相位移干涉仪观测方解石晶体,以分析储层流体中方解石的溶解或沉淀速率。“现场分析”结果表明,在注入后2天内观测到方解石沉淀。该结果支持大多数注入的二氧化碳可能以碳酸盐沉淀的观点。
简介:众所周知,由于所涉及的场地范丽和时间尺度,用实验室或模拟实验预测人为建造的二氧化碳地储存场地的长期效应和稳定性是很难的。而另一个引人注目的信息源是天然场地,这个天然场地的深度巨大,产生的二氧化碳或许在多孔储集层被捕集或许向地表泄漏。在二氧化碳地质储存场地设计的范围内,这些储存场地被视为地质时间跨度上形成的二氧化碳“天然模拟场地”。这些场地的研究可以分为三个主要方面:i)了解为什么一些储集层渗漏而另一些储层却不渗漏;ii)了解即将渗入到近地表环境的22氧化碳的可能影响:iii)利用泄漏场地来开发,测试和优化各种监测技术。本文总结了在欧共体资助的项目(地质环境中用于二氧化碳储存的天然模拟)执行期间,在意大利中部取得的许多近地表气体地球化学的成果。这些包括二氧化碳储集层渗漏(Latem)和非泄漏(Sesta)对比、为描述迁移路径而进行的土壤气体详细调查、为研究二氧化碳浓度的瞬时变化而建立的地球化学连续监测站、包括在浅层注入混合气体在内的野外试验,根据不同气体的化学-物理-生物学特性,描述迁移路径并且推测各种气体性质。上述资料为22氧化碳的选址、风险评价、监测技术提供了有用的信息,如果二氧化碳地质储存成为可以接受的并且被广泛应用的技术,那么,进行上述工作对于二氧化碳地质存储是非常必要的。
简介:2002年12月28日,在意大利佛罗伦萨Beni山脉东侧边坡发生了滑坡事件。在该边坡区域内,节理玄武岩和蛇绿质角砾岩上覆于中生代石灰岩(CalcariaCalpionelle组)。在崩塌发生前出现多种先兆信号:边坡变形发育是最主要的先兆信号;而且,边坡变形分析是风险情况评价的起点。实际上,在突发时期(开始于2002年4月13日)管理期间,我们通过结合地质力学调查、实验室分析、岩土工程调查、地球物理调查(地震和GBInSAR)、监测系统(去分光光度(distometric)系统和自动系统)和离散元数值模拟获得的数据,力求评估滑坡的实际延展情况、滑坡体范围内位移分布、滑坡体动力学特性及其时空演化。鉴于此,我们有望为政府当局提供所有所需信息以制定适当的滑坡风险管理与缓解措施。在滑坡事件发生后,我们采用滑程反分析法完成本项研究。这种方法主要针对于预期调查的成功与失败。