简介:阿尔胡韦沙赫油田位于阿曼北部海域,该油田复杂碳酸盐岩油藏在采油30年之后已处于高含水期,仍然有优质井投入生产。在裸眼完井或衬管完井的油层剖面中,应用了垂直和水平井技术并与各种气举或电潜泵组合装置相结合。油田的大面积延伸需要完整的数据采集,以便研究地下情况的不确定性。增加产量主要是采用多学科研究组方法,以便确定一种最佳方法来识别剩余油目标,并且使用基础石油工程手段以更协调的方式对其进行分级。目前标定的原油最终采收率为25%,仍在继续试验研究不同提高原油采收率方法和增产措施,预计在裂缝不发育区域通过混相水气交替注入方法增加原油采收率10%—15%。
简介:我们提出了一种利用电子探针和离子探针原位置铀氧化物矿物的U-Pb同位素快速和准确的测量技术。用电子探针测定U和Pb的含量,而同一区域的Pb同位素组成则用高分辨率的离子探针测量,这种方法的优点是无需进行矿物分离和化学加热溶解,不需要难以获得的单一的铀氧化物标准,只需要小时就可在优点是无需进行矿物分离和化学加热溶解,还需面要难以获得的单一的铀氧化物标准,只需要几小时就可在约10um的点上得出精确的U-Pb年龄,我们用这种方法研究了加拿大萨斯卡彻温不整合型Cigar湖铀矿床中复杂互相交生铀氧化物中U-Pb年龄的分布情况,取自早期形成晶质铀矿石的原地U-Pb方法的结果确认了在一致性曲线上与1467±63Ma和443±96Ma(±1σ)上、下交点有关的数据组,1467Ma的年龄解释为矿化的最小年龄值,与粘土矿物的蚀变年龄(约1477Ma)是一致的,和成岩期铁矿的磁铁矿化(1650-1450Ma)也是一致的,这种赤铁矿与这些不整合型铀矿床共生并与阿萨巴斯卡盆地沉积物早期成岩作用有关,晶质铀矿和铀石原地的U-Pb同位素分析能提供一个15-30um范围内Pb*/U的不均匀分布的资料,因百就能提供与这些矿床演化有关的流体互相作用时间方面的精确资料。
简介:本文提供了从1975年至今在北海采用的EOR技术的总结和指导原则。在北海已经采用的5项技术是注混相烃气、WAG、SWAG(水气同时交替注入)、FAWAG(泡沫辅助水气交替注入)和MEOR。用每项EOR技术的各自成熟程度或成熟期、技术应用限制以及在增油基础上的工艺效率,鉴定在北海已经采用的每种EOR技术。除了在Ekofisk油田进行的WAG和在SnorreCFB进行的FAWAG外,所有技术都在相应的油田获得了成功。认为注混相烃气和WAG在北海是成熟技术。在北海最普遍采用的技术是WAG并且被认为是最成功的EOR技术。出现的主要问题是注入能力(WAG、SWAG和FAWAG项目)、注入系统监测和油藏非均质性(注混相烃气、WAG、SAWAG、和FAWAG项目)。在报道的所有EOR技术矿场应用中,有约63%是在挪威大陆架进行的,有32%是在英国大陆架进行的,其余的是在丹麦大陆架进行的。Statoil是在北海进行EOR技术矿场应用的领先者。以后,大部分研究将集中在微生物工艺、注C02和WAG(包括SWAG)方面。在这次评述中没有考虑室内技术、世界统计、模拟工具和经济评价,因为这些方面超出了本文的范围。
简介:为建立类似的白垩系储层的露头模型,沿墨西哥北部一条长5kin、近似连续、按倾向定向的横断面,绘制了罕见的阿尔布阶进积台地边缘斜坡露头的剖面。研究区位于埃尔塞德拉尔(ElCedral),分布在泥质马弗里克(Maverick)陆棚内盆地周边德弗尔斯河(DevilsRiver)粒状灰岩带的西部边缘。在研究区的拉斯皮拉斯(LasPilas)组中识别出了4个比较完整的斜坡沉积体和相邻的两个斜坡沉积体的一部分。拉斯皮拉斯斜坡沉积体呈复杂的S形一倾斜几何形态,纵向起伏幅度为40-60m,前积层倾角8~15°,倾向延伸l~2km。在其内部,斜坡沉积体的前积层含有厚层-巨厚层、S形-倾斜形的透镜体,它们在东南方向上呈叠合的向海阶进模式。拉斯皮拉斯斜坡沉积体的顶积层、前积层以及底积层主要由粒状灰岩和富含颗粒物的泥粒灰岩构成。主要的颗粒类型是包壳颗粒,其次是大量的微晶软体动物碎片和内碎屑。孔隙度以溶模孔隙为主,但原始粒间孔也比较常见。灰质砂岩沿着斜坡的高能顶积层被簸选、包壳和微晶化,然后向海输送到破波点,在那里它们以间歇性的颗粒流或块体流的形式汇集到陡峭的斜坡前缘。决定着斜坡沉积体轮廓的主边界面很可能代表了阶段性沉积间断和界面的废弃,它们有可能发生在沉积地点沿着浅滩边缘侧向变化的过程中。拉斯皮拉斯斜坡沉积体的结构和组成为地下类似的储层对比提供了直观的资料,如波斯湾阿普特阶舒艾巴组(Shuaiba)[布哈萨(BuHasa)油田]和森诺曼阶米什里夫(Mishrif)组[例如乌姆阿达尔赫(UmmAdalkh)油田)]。
简介:爪洼西北部海上大型E油田的南区有5个已经落实的构造:ESW、ESS、EST、ESP和ESR。由于边际效益的原因,目前仅有ESW构造投入开发,其余四个构造均无法采用常规方式进行开发。一个由多学科专家组成的研究组,采用创新的方法对这些边际油田进行了开发。建造了一个可钻三15'井的丛式钻井平台,并通过其中一个导眼钻了一口多分支井,钻探EST区ES-31砂岩中的两个目的层;第二口井钻探目标为Main/Massive和TalangAka砂岩;第三口井采用水平井技术开发ESS区ES-31A砂岩(可参见图12-译者注)。同直井和单支水平井相比,多分支井的采油指数明显提高。在遇到诸如断层这样的非渗透隔层时,多分支井还能减小生产的不确定性。最佳的水平段长度和分支数量,要通过对比分析增油量和钻完井成本来确定。这个项目是ARCO印尼公司第一次在印度尼西亚采用多分支井技术。水平井技术的成功应用,为ARCO印尼公司开发爪洼西北部海上边际油田提供了一种经济有效的方式。
简介:在海因斯维尔页岩水平井的钻井和完井中已形成了一条很陡的学习曲线。这里的挑战是了解海因斯维尔页岩的产气机理以及有关水平井段长度、压裂段数和压裂处理的完井实践是如何与产量发生关系的。,本文对海因斯维尔页岩水平井的产量、影响产量的主导因素以及详细的完井分析进行了概述。影响海因斯维尔页岩产量的主导因素可以分为四类:地质/岩石物性/地质力学、水平井段的钻入层位和方位、完井和产量控制。将这四类因素综合起来对于描述气井动态和优化今后产量都很关键。但本文主要侧重于水平井的完井。海因斯维尔页岩“海峡区”49口水平井的自组织图(SOMs)显示,高产井主要都是用减阻水进行压裂处理的,而且都具有很高的流体和支撑剂用量、适中的100目砂数量以及中等射孔泵速。这些井一般都以75英尺的丛式井井距分布,压裂处理的分段长度约为300英尺。与产量较低的井相比,多数高产井都显示了较低的压裂后瞬时关井压力(ISIP)。高产井的这些现象和特征如结合一流的完井实践,就能有助于设计海因斯维尔页岩的最优完井和增产压裂处理方案。
简介:砂岩岩心和钻屑中的含油流体包裹体代表了隐蔽的石油显示。含有此类包裹体的石英颗粒的数目(GOI数)反映了砂岩储层中曾经历过最大的古含油饱和度,而与现今流体相无关。含油饱和度高的样品比含油饱和度低的样品的GOI数至少高一个数量级。因此,在原始油被后期填充气取代的井中,可根据这些流体包裹体的资料确定古油柱并划分原始油一水界面。此外,若能利用详细的GOI图精确确定原始油一水界面的位置,那么就可以确定古油柱的高度并估算原始石油地质储量。奥利弗(Oliver)油气田位于澳大利亚蒂汶海(Timor),现在含有一个178.5m的油气柱,其中气柱高164m,位于14.5m油柱之上。该油气田已填充至溢出点。奥利弗-1井的GOI图显示,在现在的气柱内古油柱的总高度曾在99-132m之间,原始石油地质储量高达2亿bbl,明显高于现在4500万bbl的储量。高达1.55亿bbl的油从奥利弗构造转移到其上倾方向的倾斜断块,从而大大改善了该断块构造的勘探远景。GOI制图法是一种储层描述新方法。它能可靠探测现在被气充填的圈闭中的古油储。在新井钻探之前,利用这些资料可以定量描述气藏及其附近未测试构造的油藏潜力。
简介:巨型汉迪尔(Handil)油田包括500多个油气藏,构造上为叠置和间隔的河流三角洲砂层。多数油气藏由位于气顶下的大幅度饱和油柱组成,油气捕集在具有良好岩石性质的储层中,并且经过注水或强天然水驱开采。1995年代表近油田总原始原油地质储量1/5的五个油藏已达到注水开发的最终阶段(已采出原始石油地质储量的58%),提出用注干气进一步开发,增加最终原油采收率。到目前为止,注气三年后这五个油藏采油率已增加了原始石油地质储量的1.2%,认为该方案在技术上和经济上都是成功的。通过矿场数据已证实注干气的主要驱动机理,以前的在原油产量下降已经停止,现在产油量是稳定的。监控的主要困难是对多数生产井控制气体循环,特别在较高注入量期间,为了对受气体可用性影响的低注入量期间补偿。井和储层动态的非常严密监控数值模拟和物质平衡研究有助于提供更好了解所涉及的机理,得出一种修正的更有效的策略,使产油量达到最大。所得的经验和这三年老方案的分析,使我们有把握把注干气开发扩大到汉迪尔油田的其他油藏。