简介:美国的商业性天然气最早(1821)产自阿巴拉契亚盆地富含有机质的泥盆系页岩。了解有机质页岩层的地质和地球化学特征,提高其天然气生产率,是20世纪70年代以来耗资巨大的研究工作中极具挑战性的问题。页岩气系统基本上是生物成因(主要类型)、热成因或者生物——热成因的连续型天然气聚集,它以大面积含气、隐蔽圈闭机理、可变的盖层岩性和较短的烃类运移距离为特征。页岩气可以是储存在天然裂隙和粒间孔隙内的游离气,也可以是干酪根和页岩颗粒表面的吸附气或是干酪根和沥青中的溶解气。美国正在进行商业性采气的5套页岩层,在热成熟度(Ro)、吸附气馏份、储层厚度、总有机碳含量和天然气地质储量等五项关键参数上有出人意料的巨大变化。此外,低基质渗透率页岩储层中的天然裂缝发育程度是天然气生产率的控制因素。目前,只有少数天然裂缝十分发育的页岩井不采取增产措施便可生产商业性天然气。在其它的大多数情况下,成功的页岩气井需要进行水力压裂。密歇根盆地的泥盆系Antrim页岩和阿巴拉契亚盆地的泥盆系Ohio页岩约占1999年全美页岩气产量(380×10^9立方英尺)的84%。但是,后来经过充分勘探和开发的其它3套主要有机质页岩层,即伊利诺伊盆地的泥盆系新Albany页岩、福特沃斯盆地密西西比系的:Barnett页岩以及圣胡安盆地白垩系的Lewis页岩,其天然气年产量正在稳步上升。在作过资源评价的盆地中,页岩气资源量十分丰富,其地质资源量高达497~783×10^12立方英尺。技术可采资源量(Lewis页岩除外)变化在31~76×10^12立方英尺之间。其中以Ohio页岩的地质资源量和技术可采资源量最多。
简介:美国最初(1821年)的商业性天然气产量产于阿拉巴契亚盆地富含有机质的泥盆系页岩中。自70年代以来,了解有机页岩地层的地质和地球化学特征和提高天然气产能已先后取得数百万美元的研究价值。页岩含气系统实质上是连续的生物成因(占主导地位)、热成因或生物—热复合成因气藏,其特征表现为含气饱和度分布广、具有隐蔽圈闭机理、具有不同岩性的基层和相对较短的运移距离。页岩气既可以游离气状态储藏在天然裂缝和粒间孔隙中,也可以气态形式吸附在干酪根和粘土颗粒表面或溶解在干酪根和沥青中。美国现有5套商业性产气页岩,它们的5个关键参数变化极大,这5个关键参数是:热成热度(用镜质体反射率表示)、吸附气馏分、储层厚度、总有机碳含量和天然气地质储量。另一方面,在基岩低渗透率页岩储层中,天然裂缝的发育程度是控制天然气产能的一个重要因素。迄今为止,仅在少数未实施增产措施的页岩井中获得商业产气量,这些井钻遇到天然裂缝网络中。在大多数其它情况下,在成功的页岩气井中必需进行水力压裂。1999年总共生产了380bcf页岩气,其中,产自密执安盆地泥盆系Antrim页岩和阿巴拉契亚盆地泥盆系俄亥俄页岩中的气约占84%。但是,产自后来相继投入勘探和开发的另外3套主要有机页岩的天然气年产量稳定增加,这3套有机页岩分别是伊利诺伊盆地泥盆系NewA1bany页岩、沃思堡盆地密西西比系Barnett页岩和圣胡安盆地白垩系Lewis页岩。在已估算天然气储量的那些盆地中,页岩气的资源量为497—783tcf。所估算的技术上可采纳资源量(Lewis页岩除外)为31—76tcf。在2套页岩中,0hio页岩中的天然气资源量占有最大约份额。
简介:本文分析了流体诱发的微地震活动的时间分布,同时显示了从这种地震活动速率中可以提取哪些油藏和震源信息。我们假定流体注入诱发的微地震事件是由孔隙压力张驰的扩散作用引发的。我们改进了有关流体诱发微地震活动速率的现有公式,这是在上述假设的基础上进行的。由此导出了一个方程式,它根据震源和油藏参数描述了微地震活动的时间分布。然后我们提出,为了描述流体注入停止后所诱发地震事件的时间分布,可以将描述天然余震发生频率的著名的Omori定律应用于由流体诱发的微地震。即使在地震学中,Omori定律特征P值的控制参数仍在探讨中。本文为流体诱发地震活动确定了P值的控制参数,并指出哪些震源和油藏参数可以由P值分析重建。最后,我们将本文提出的理论应用于合成数据集和FentonHill(1983)的实际数据。
简介:泥岩是分布最为广泛的一种沉积岩,在油气系统中它们既可以充当烃原岩,又可以充当盖层,还可以充当页岩气的储层。泥岩很多重要的物化性质都强烈地受多种因素的影响,例如矿物学组成和沉积物颗粒的大小以及成岩变化(压实前和压实后的变化),而这些因素往往都是可以预测的。泥岩矿物成分的多样性反映了注入盆地的碎屑物质及其水动力学分离作用、盆地内原始有机物产量以及沉积物的成岩作用(沉积和溶蚀)。利用高放大倍数显微镜对现代和古代沉积地层的观测结果表明,泥岩的结构和矿物学特征都具有非均质性;而这种变化性并不总是显而易见的。虽然部分泥层的确是通过低能羽烟(buoyantplumes)的悬浮沉淀作用而沉积的,但泥岩结构分析发现,这些泥层通常会在多种因素的共同作用下而分散,包括波浪、重力驱动的作用以及风暴或潮流驱动的单向流。这些分散机理表明,泥质沉积序列一般可以在层序地层学的框架下进行解释。早期的生物活动会使泥层均质化,而早期的化学成岩作用会导致高度胶结地层的发育,尤其是在地层表面。埋藏较深的成岩作用涉及压实作用、矿物溶解、重结晶、矿物重新排列定向和岩化以及油气生成等,这要取决于泥层的沉积特征和早期成岩特征。
简介:利用微地震事件的空间-时间分布,为一套产油气的密西西比系页岩估算了压裂作业前、后的渗透率。在压裂作业开始时,微地震事件的空间和时间分布,指明了可导致水力裂缝发育的非线性孔隙压力松驰。这样就有可能应用Dinske等(2008)的方法来估算压裂作业前、后这套页岩的渗透率。水力裂缝周围这一原始页岩层的渗透率约为4×10^-5达西,而水力裂缝自身的渗透率约为1达西。对于水力裂缝的长度和宽度也作了估算。微地震事件位置与能量的比较表明,产生了水力裂缝的微地震事件其能量要大于在压力向围岩扩散时所发生的事件。孔隙压力扩散微地震事件的空间分布与天然裂缝的方位十分一致。
简介:单个成藏层带的勘探结果表明,虽然油气发现规模变化很大,但其分布的某些性质对评价未钻探的远景圈闭有用,例如P99的上限。但这样的信息很少成为未钻探远景圈闭评价的必要组成部分。如果能将其纳入工作流程,历史数据就可以帮助限定与储层特性有关的自然分布,还可帮助控制地质和商业风险。在评价新远景圈闭时,可以计算高值情形的确定性储量体积,但获得这种储量的概率其本身主要是猜测性的;而低体积情形的计算更难控制。因此,概率方法已成处理勘探不确定性的标准方法。但在确定圈闭规模或含油气岩石总体积(hobGRV)时存在一个问题,由盖层位置、储层和流体界面的综合累计概率所确定的分布更为如此,因为在钻探之前,我们没有这些界面的直接数据。遗憾的是,这个问题没有解决办法,所以我们开发了一种质量控制手段,它利用确定性输入参数来检验概率输出结果的真实性。这种手段可以称为实点资源迭代(RPRI),其主要目的是提高体积预测的一致性。RPRI使用客观指标来计算两种确定性情况,据此就可以生成一个完整的油气发现规模分布。然后用简单的统计数据和由历史数据得出的信息对有关结果进行迭代。这种方法的关键在于根据最后闭合等深线(LCC)相对于构造顶点的深度来确定标准hcbGRV。这种方法不但快速、透明和可以重复,而且根据预测真实低值储量体积的经验可以避免过分乐观。其输出结果与概率方法的相似,意味着很容易对比和调整这两种方法。RPRI还可用于为特定的概率输出结果生成图件和储层参数,从而为经济评价和方案规划提供真实的依据。
简介:在全世界的非常规含气系统中,盆地中心气系统(BCGS)可能是经济价值较大的一种。美国每年的天然气总产量有15%来自盆地中心气系统。在许多方面,这些区域性分布的气藏都不同于常规圈闭气藏。与盆地中心气系统相关的盆地中心气藏(BCGA)具有区域性普遍成藏的典型特征,它们处于气饱和状态,具有异常压力,通常缺失下倾的水接触面,同时储层渗透率很低。这些气藏有些是厚度仅几英尺的单个孤立储层,有些则是几千英尺厚的叠置储层。目前人们已经识别两类盆地中心气系统:一类是直接型,以拥有气型源岩为特征;另一类是间接型,以油型源岩为特征。在埋藏和热作用过程中,这两类盆地中心气系统源岩的差异导致了系统特征的明显不同,从而对勘探战略产生影响。已知的盆地中心气藏以直接型为主。盆地中心气藏的勘探从初期到现在都集中在北美地区。在世界上其它地区,人们对盆地中心气系统的概念知之甚少,因此以这些气藏为重点的勘探活动微不足道。