简介:非常规浅层生物成因天然气分为两个不同属性的系统。早生系统和晚生系统。早生系统呈毯状,天然气形成于储集层和烃源岩的沉积作用之后不久。晚生系统呈环形,在储层和烃源岩沉积作用与天然气形成之间有一段很长的时间间隔。这两种天然气系统都以甲烷为主,并且都与非热成熟的烃源岩有关。典型的早生生物成因天然气系统在加拿大的艾伯塔北部大平原、萨斯喀彻温省和美国的蒙大拿州,其产层为白垩系低渗透储集层。主要产区位于艾伯塔盆地东南边缘和威利斯顿盆地的西北边缘。巨厚的白垩系储集层的区域沉积模式为:西部为非海相粗粒厚碎屑岩,东部为细粒海相岩层。下部储集层比上部粒度细,孔隙度和渗透率较低。相应地,下部烃源岩总有机碳含量(TOC)较高。上部和下部地层单元的剥蚀作用、沉积作用、变形作用和产量等特征均与以区域线性断层为边界的基底断裂有关。地化研究表明,天然气和同时产出的水是均衡的,且产出液年代较老,为66Ma(百万年)。早生天然气系统的例子还有威利斯顿盆地西南边缘的白垩系碎屑岩储层和丹佛盆地东缘的白垩岩。晚生生物成因天然气系统的代表是密执安盆地北缘泥盆系Antrim页岩。储集层为富含有机质的裂缝性黑色页岩。它也具有烃源岩的作用。尽管裂缝对于生产很重要,但与特殊地质构造的关系不明确。大量的水随着天然气一同产出。地化资料表明水为淡水,年代也较轻。目前的研究认为,过去生成了生物成因气,并且今后当冰川溶化成的水流入裂缝形成的排泄系统时,这种生气作用还将继续下去。晚生系统的例子还有伊利诺斯盆地东缘的泥盆系新Albany页岩和波德河盆地西北边缘的第三系煤层甲烷产层。两种生物成因天然气系统具有相似的资源演化史。起初,由于缺乏研
简介:叙述了用来评价非常规天然气系统(还可定义为连续气藏)的概念。连续气藏差不多独立于水柱而存在,且与气体在水中的浮力没有直接关系。它们不能按下倾水面所划分的单个可数油田或油藏来代表。基于这些原因,根据估算未发现的不连续油藏的规模和数量的传统资源评价方法不能应用于连续气藏,而需要专门的评价方法。非常规天然气系统(也称连续气藏)包括煤层甲烷、盆地中心气、所谓的致密气、裂缝泥岩(和白垩岩)气和天然气水合物。随地质环境的不同,深盆气和微生物气系统可以是连续气藏,也可以是非连续气藏。采用了两种基本的资源评价方法来评价连续气藏。第一种方法基于对天然气地质储量的估算。通常将天然气地质总储量的体积估算值与总采收率值结合起来使用,以便将评价范围从评价沉积岩中的天然气储量缩小到预测储量增加的潜力;第二种方法基于连续气藏的生产动态,如以经验为主的气井和气藏生产模型所反映的那样。在这两种方法中,生产特征(而非天然气地质储量)是预测储量增加潜力的基础。
简介:本文讨论了确定天然气等温压缩系数的两种通用方法,即1957年发表的Trube法和1975年发表的Mattar等人的方法。Trube法作图表示了对比压缩系数Cr=CgPc是对比压力和对比温度的函数,而Mattar等人的方法则作图表示了CgPcTr或CrTr是对比压力和对比温度的函数。本文对1957年建立的Trube图解法用Dranchuk和Abou-Kassem的十一系数的压缩因子Z的状态方程重新进行了计算。重新作出的Trube曲线图有更宽的适用范围,并且比原始曲线更加精确,尤其是在临界范围内。本文也提出了计算气体压缩系数的新方法,该方法导出了作为对比压力和对比温度的函数的无因次压缩系数CgP的表达式,结果以图解和计算机应用的子程序两种形式提出。