简介:将乙二醇分子模拟成一个多自由度无阻尼自由振动体系,用振动力学有限元分析方法中的空间刚架元对乙二醇分子结构隐氢图进行分析求解,可得到相应的分子结构固有频率.选择其中的基频、总频及其确定的Lennard-Jones势函数为模型参量,用于建立乙二醇液体热导率温度关联式,其相关系数高达0.9945;用于建立乙二醇和1,2-丙二醇液体热导率-温度关联式,其相关系数高达0.9998;用于建立乙二醇、1,2-丙二醇和丙三醇(甘油)3种液体热导率-温度关联式,其相关性高达0.9976.结果表明:基于分子结构固有频率和Lennard-Jones势函数的热导率-温度关联式可用于不同温度下多元醇类液体热导率的预测和估算.
简介:给出了使用GAUSSIAN程序中密度泛函理论方法进行量子化学计算时遇到的一类问题-六氟锗乙烷分子F3Ge-GeF3的基态构型随计算积分精度不同而改变,即GAUSSIAN程序中计算积分精度对计算结果产生重要影响的一个例子。
简介:给出了使用GAUSSIAN程序中密度泛函理论方法进行量子化学计算时遇到的一类问题———六氟锗乙烷分子F3Ge—GeF3的基态构型随计算积分精度不同而改变,即GAUSSIAN程序中计算积分精度对计算结果产生重要影响的一个例子.更多还原
简介:采用QCISD(T)/6-311+G(3df,p)//B3LYP/6—31G(2dr,p)方法研究了HOS和0H的反应机理,获得了生成产物P1(SO+H2O)和P2(SO2+H2)的6条不同路径且构建了其单重态势能面.结果表明,P1(SO+H2O)为主产物,优势路径R(HOS+OH)→1M1→TS→iso→IM4→TS3→P1(St)+H20)和R(HOS+OH)→IM1→TS4→P1(SO+H2O)的表观活化能分别为~95.90和-95.92kJ·mol-1.根据经典过渡态理论结合隧道效应校正计算了标题反应在200K~2000K温度范围内总的表观速率常数ktot,拟合得到其三参数表达式k(T)=1.13×10^-21T2.69exp(-12842.30/T).基于统计热力学原理预测了标题反应中所有稳定物种的生成焓(ΔfH298)、熵(S298S)和热容(Cp,200K~1000K).理论结果与实验数据较为接近.
简介:采用密度泛函理论B3LYP/6-311++G(d,p)方法对聚氯乙烯模型化合物的热降解机理进行了理论研究,探索了主要热降解产物HCl、芳香族化合物及乙烯、甲烷等小分子碳氢化合物形成的可能热降解反应路径.对反应过程中所有反应分子的几何结构进行了优化和频率计算,获得了各热降解路径的标准动力学参数和热力学参数.计算结果表明:在HCl的形成过程中,主要通过协同反应,反应能垒为128.6~212.5kJ/mol;丙烯基能降低HCl脱除的反应能垒,而丁稀基对HCl脱除的反应能垒几乎没有影响;HCl完全脱除之后生成共轭烯烃,共轭烯烃进一步通过分子重排、环化形成芳香族化合物,同时也可以通过C—C键断裂形成小分子碳氢化合物;与重排和环化反应相比,直链烯烃C—C键断裂形成小分子碳氢化合物需要跨越更高的反应能垒.本文研究结果对聚氯乙烯的热降解机理提供了新的认识,为进一步设计环境友好与高效的聚氯乙烯热降解技术提供一定的理论依据.
简介:设计了系列环丙烷衍生物,考察了这类分子作为含能材料的潜在应用价值.使用密度泛函方法计算了分子结构和频率,确定了这些结构是势能面上的极小点.为了进一步考察这类分子的热力学稳定性,计算了它们的键解离能和生成热等性质,确定了A1分子的引发键为侧链上的N—NO2键和环上的C—C键几乎同时断裂,A2和A3分子的引发键为N—NO2键,而且所有引发键的解离能均大于80kJ/mol,证明这类分子具有足够的稳定性进行实验室合成.高能量密度分子的爆轰性能和感度是2个最重要的指标.爆轰性质方面,使用K-J方程计算了这类分子的爆速、爆压.在感度性质方面计算了分子的氧平衡和撞击感度参数.结果表明,A3分子具有最为优秀的爆轰参数(D=9.87km/s,P=43.33GPa),是该类分子中最有潜力的高能量密度分子.
简介:研究了采用多元光谱拟合(MSF)功能ICP-AES法测定钢铁中磷的方法。采用MSF法扣除光谱干扰,选择波长为213.617nm的谱线作为磷的分析线,样品用硝酸(1+5)和浓盐酸溶解后可用ICP-AES直接测定。考察了仪器工作参数对测定结果的影响,确定了最佳工作条件:观测高度为13mm,雾化气流速为0.7L/min,射频功率为1300W。实验结果表明,方法的线性范围为0.05~100mg/L,线性相关系数为0.9998,检出限为0.0411mg/L,样品测定结果的相对标准偏差(RSD)为1.8%,加标回收率为96.1~100.8%。方法准确、快速,具有良好的精密度和准确度,可用于钢铁中磷的测定。
简介:用量子化学B3LYP/6-311+G(d,p)方法优化了H2ClCS单分子分解反应驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.用QCISD(T)/6-311++G(d,p)方法计算各物种的单点能,并对总能量进行了零点能校正.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),计算了主反应通道在200K~2000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.结果表明,H2ClCS存在8条可能的裂解通道,可生成产物P1(HCS+HCl),P2(CSH+HCl),P3(H2S+CCl)和P4(ClHCS+H).所有反应均为吸热反应.相对于H2ClCS,各产物能量分别为60.9,222.9,275.7和156.9kJ.mol-1.通道H2ClCS→TS3→P1的反应势垒为81.5kJ.mol-1,是标题反应的主反应通道,其余通道为次反应通道.在200K~2000K温度区间内得到主反应通道的表观反应速率常数三参数表达式为.kCVT/SCT=8.7610T0.79exp(-4053.6/T)s-1.