简介:目的:分洪工程的启用具有非常重要的防洪效益,但同时也将严重威胁分洪区群众的生命财产安全。为定量计算洪水中人体(成人与儿童)、车辆、房屋、农作物(水稻和棉花)的洪水风险与洪灾损失,考虑受淹对象的失稳机理,提出分洪区群众生命与财产的洪水风险模拟模型。创新点:1.基于力学过程中的洪水中人体与车辆失稳的计算公式,建立相应洪水风险等级评定的新方法,并提出4类受淹对象平均损失率的计算方法;2.结合二维水动力学模型的计算结果,分析4类受淹对象洪水风险的时空变化情况,同时讨论根据不同下垫面类型取不同糙率值以模拟洪水演进过程的必要性,并比较文献中提出的洪水中人体风险等级计算结果的差异。方法:1.分析现有洪水中人体、车辆、房屋和农作物风险或损失的计算方法,提出相应洪水风险计算关系或计算曲线(公式(3)~(6),图1和2);2.参考1954年荆江分洪工程北闸第一次的分洪情况,通过计算分洪区140h的洪水演进过程和4类受淹对象洪水风险的时空分布(图8),同时得到4类受淹对象平均损失率随时间的变化情况(图10);3.在荆江分洪区洪水演进过程模拟中,讨论根据不同下垫面类型确定相应糙率值的方法与计算区域糙率统一取值0.04、0.05或0.06的3种工况下洪水要素变化的差异(图11和12),并采用文献中提出的洪水中人体风险等级计算方法,比较洪水中人体风险等级变化的异同(图13)。结论:1.一旦荆江分洪工程启用,截止至北闸开启140h时,洪水中人体、车辆、房屋、农作物的平均损失率达到75%以上,即分洪工程的启用将造成重大的生命财产损失;2.糙率取值方法的不同,导致洪水演进过程不同,进而影响各类受淹对象的洪水风险评估,因此需要根据不同下垫面类型确定相应的糙率值;3.文献中提出的洪水中人体风险�
简介:目的:探究季铵型聚合物CO2解吸附过程温度和CO2浓度等变量对解吸附热力学和动力学的影响;研究空气CO2捕集供给植物增产的耦合方法,降低空气CO2捕集与利用的能耗与成本。创新点:1.基于变湿吸附技术,探究了季铵型聚合物CO2解吸附过程的热力学及动力学特性;2.获得了CO2作为气肥供给植物增产的关键影响参数;3.建立并优化了空气CO2捕集与植物利用的耦合模型。方法:1.通过CO2吸附平衡与动力学实验,获得季铵型聚合物CO2解吸附的平衡常数和动力学常数的影响参数;2.通过植物CO2吸收实验,获得CO2供给植物增产过程中CO2浓度和光照强度对吸收速率的影响;3.通过理论推导,构建解吸附CO2浓度与吸附剂质量、温度以及吹扫气流量等的关系,获得空气CO2捕集与植物增产的耦合模型并计算CO2捕集的能耗与成本。结论:1.季铵型聚合物材料吸附CO2的平衡常数随温度的升高而降低;吸附、解吸附动力学常数随温度的升高而升高。2.CO2供给植物增产的最佳浓度和光照强度为1000ppm和8000lux。3.基于优化的空气捕集与植物利用的耦合算法,CO2的捕集能耗与成本分别为35.67kJ/mol和34.68USD/t。