简介:针对当前行人运动特征监测方案中存在运动信息种类单一、特征提取不完善、识别算法复杂且需要依赖专业检测设备等问题,提出基于智能移动端内置惯性传感器的行人运动特征自动辨识方案,为运动特征识别提供准确多样的运动信息。采集移动端MEMS加速度计输出信息后,分别提取加速度数据的三种时域及频域特征后,通过训练最邻近规则分类器实现行人行走、跑步和上下楼梯运动模式的自动识别。不同年龄不同身高的男女性运动特征提取实验结果表明,基于最邻近规则的移动端行人运动特征辨识方法对4种日常活动的平均查准率和查全率分别达到88.7%和90.3%,对提高微惯性行人导航系统普适性具有促进作用。
简介:为了实现GPS信号缺失下的移动机器人自主导航,解决传统粒子滤波中的粒子退化以及粒子贫乏引起的移动机器人定位和导航精度下降问题,提出了基于小生境理论的启发式蝙蝠优化粒子滤波的同时定位与地图构建算法。首先,在启发式蝙蝠优化算法的速度和位置更新过程中,引入惯性权重,加快了算法寻优精度,提高了收敛速度;然后,利用小生境理论进一步优化启发式蝙蝠算法,利用排挤机制和惩罚函数,有效地保证了种群的多样性,提高了算法的全局寻优能力;最后,将基于小生境理论的启发式蝙蝠优化算法用于传统粒子滤波采样中,使得粒子能够智能、快速地向高似然区域运动,同时提高了传统粒子滤波算法的全局寻优能力和寻优精度。实验结果表明:该算法显著提高了移动机器人导航和定位的精度和实时性。
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:在不同工况下,旋转爆震波能够以单波、双波、多波模式进行传播.但在同一工况下,是否存在不同模式的稳定传播爆震波还有待进一步研究.基于Euler方程,耦合氢气/空气的有限化学反应速率模型,并采用高分辨率的5阶有限差分格式WENO-PPM5离散对流项,对三维旋转爆震波进行了数值模拟.计算结果表明,在同一特定工况下,旋转爆震波能够以两种不同的传播模式稳定传播,即单波模式和双波模式.详细地对比了两种传播模式下的流场特征、爆震波传播特性、推力性能等.在同一工况下,两种传播模式的爆震波周向传播速度相差不多,但双波模式的频率约为单波模式的2倍;双波模式下质量流量、比冲、推力的平均值均略高于单波模式;且双波模式的可燃混气层高度约为单波模式的1/2,这有助于缩小旋转爆震发动机的长度,使之更加紧凑.