简介:在广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。
简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。
简介:针对惯导平台连续翻滚自标定中安装误差标定精度不高这一现状,提出了一种解决方案。通过对惯性器件的输出误差模型和安装误差的分析,建立了系统的姿态动力学方程和观测方程,利用输出灵敏度理论分析了系统的可观性,指出加速度计安装误差可观性较差是影响标定精度的主要原因。利用Kalman滤波中的估值方差矩阵计算了安装误差之间的相关系数,计算结果表明可观性差是由安装误差之间的线性相关性造成的,并确定了具体的不可观参数。以加速度计输入轴为基准建立平台坐标系可以减少安装误差项,使所有的安装误差的变得可观。最后的仿真结果表明在新的方案下,安装误差的估值偏差小于5",标定精度得到了显著提高。