简介:为了实现某型导弹小姿态惯性导航平台射前自标定,分析并建立了精确实用的小姿态导航平台静态误差模型,设计了转动控制与测漂电路,充分利用射向条件和平台稳定性,实现导航平台在全装弹状态下自动转动、锁定和测漂,并以加速度计和陀螺输出作为开环观测量,结合误差模型分离出各误差系数。通过对各种误差进行综合仿真分析,得到标定系数的相对误差不超过4%,其标定时间缩短为借助转台标定所需时间的40,满足了射前标定的精确性和快速性要求。方案在不改变现有装备的情况下,控制平台按照预设轨迹小角度旋转两次,仅分别在三个预设位置同时对三个陀螺进行测漂标定,适合实际导弹发射。
简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。
简介:针对风场对临近空间伪卫星导航精度影响的问题,提出伪卫星抗风场干扰自主导航算法,以提高伪卫星的导航精度。首先,将风场模型加入伪卫星SINS/CNS/SAR组合导航的量测模型中,建立风场干扰下的SINS/CNS/SAR组合导航系统模型;然后,设计自适应UPF非线性滤波算法,将该算法用于SINS/CNS/SAR组合导航解算中,分别在考虑风场干扰和不考虑风场干扰的情况下,利用UKF、UPF和自适应UPF算法对临近空间伪卫星组合导航系统误差进行估计。仿真结果表明,在考虑风场干扰的条件下,提出的自适应UPF算法在东向、北向和天向的速度误差均控制在±0.21m/s以内,误差大小分别是现有的UKF和UPF的1/5和1/3。该算法能有效抑制风场对导航解算精度的影响,提高伪卫星的定位精度。
简介:针对惯导平台连续翻滚自标定中安装误差标定精度不高这一现状,提出了一种解决方案。通过对惯性器件的输出误差模型和安装误差的分析,建立了系统的姿态动力学方程和观测方程,利用输出灵敏度理论分析了系统的可观性,指出加速度计安装误差可观性较差是影响标定精度的主要原因。利用Kalman滤波中的估值方差矩阵计算了安装误差之间的相关系数,计算结果表明可观性差是由安装误差之间的线性相关性造成的,并确定了具体的不可观参数。以加速度计输入轴为基准建立平台坐标系可以减少安装误差项,使所有的安装误差的变得可观。最后的仿真结果表明在新的方案下,安装误差的估值偏差小于5",标定精度得到了显著提高。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:基于惯性系的双矢量定姿方法选择惯性系中的两个重力视运动向量作为不共线矢量,解决了传统双矢量定姿方法在晃动基座条件下易受载体角运动干扰而无法实现对准的问题,但该方法仍需要精确的地理纬度信息以参与对准计算。针对未知纬度条件下的SINS抗晃动自对准问题,提出了一种基于重力视运动的三矢量自对准方法。该方法将初始对准问题归结为求解当前时刻导航系相对于初始时刻载体系的姿态矩阵问题,并利用矢量运算进行求解,仿真结果表明:加速度计随机测量噪声会映射为重力视运动随机噪声,降低对准精度;当加速度计随机噪声量级较大时,会带来对准计算失败。针对噪声问题,引入Daubechies(db4)小波进行5层分解来实现对重力视运动的降噪,并选择去噪后的重力视运动向量参与三矢量定姿解算,仿真结果表明:db4小波具有良好的去噪效果,基于小波去噪的三矢量自对准方法可以有效完成未知纬度条件下的SINS初始对准。