简介:针对传统基于g信息的粗对准的捷联惯导系统中,受传感器噪声的影响,存在效视运动无法提取和双向量共线的缺点,提出了一种基于改良Kalman滤波的参数辨识粗对准方法。该方法通过构建视在重力在初始载体系中的映射模型,利用改良Kalman滤波进行模型参数辨识,然后通过识别参数重新构建视在重力在初始载体系中的映射,解决了由于传感器噪声导致有效视运动无法正常提取的缺点。利用识别参数具有随估计次数增多得到优化的特点,构造初始时刻和最终时刻向量,避免双向量共线问题。利用改良Kalman滤波算法的自适应特点,优化参数识别精度与速度。转台实验表明,采用改良Kalman滤波方法航向对准精度为-0.0414°,标准差为0.041°,而传统RLS方法得到的航向精度为-0.0738°,标准差为0.128°。由此可知,本文提出的方法性能更优。
简介:针对无陀螺或陀螺失效等情况下的飞行器姿态确定问题,基于无冗余姿态描述形式修正Rodrigues参数,提出了仅利用星敏感器矢量观测信息来确定飞行器姿态的UPF(UnscentedParticleFilter)算法。UPF利用UKF(UnscentedKalmanFilter)得到粒子滤波的重要性密度函数,从而克服了标准的粒子滤波没有考虑最新量测信息和UKF只能应用于噪声为高斯分布的不足。修正Rodrigues参数描述飞行器姿态具有简洁高效的特点,通过切换方法避免了奇异性现象。仿真结果表明,该姿态确定算法可以取得比UKF更快的滤波收敛性和更高的滤波精度,并且比四元数算法计算效率提高近10%。
简介:针对Kalman滤波器在捷联惯导系统(SINS)初始对准中的应用,系统分析了Kalman滤波器参数(包括估计误差协方差阵初值P0,模型噪声方差阵Q和量测噪声方差阵R)选取对系统状态变量的估计精度和收敛速度的影响。采用协方差性能分析法,进行了Kalman滤波器参数优化仿真,仿真结果表明:调整扁的取值可改变状态变量估计的收敛速度,调整Q或R的取值,既可改变状态变量(尤其是陀螺误差)的收敛速度又可改变它们的估计精度。综合考虑时,局的取值要比真实值大一些,Q和R的取值要比真实值小一些,这样既可缩短陀螺误差和加速度计偏置误差的估计时间,又可提高它们的估计精度。文中还给出了使滤波器正常可靠工作的P0、Q和R参数的范围。
简介:推导了线振动微机械陀螺的三自由度误差力学方程,并详细分析了陀螺耦合误差的产生机理。分析结果表明,各种结构误差是导致陀螺耦合误差信号的主要原因。在此基础上,利用振动和模态理论给出了陀螺结构误差参数的分离和辨识的试验方法和结果。试验结果表明,同相耦合分量和正交耦合分量是微机械陀螺的两种主要误差信号,造成正交耦合的主要原因是驱动轴和检测轴之间的刚度耦合以及驱动轴和检测轴各自的刚度不对称,造成同相耦合的主要原因是驱动轴和检测轴之间的阻尼耦合以及检测轴刚度不对称和驱动力不对称。结构误差参数的分离和辨识试验方法将为下一步的陀螺结构优化、微加工工艺改进以及耦合误差抑制提供基础。
简介:采用放电测量和光学诊断技术对三电极等离子体合成射流激励器电特性及流场特性进行了实验研究,分析了放电电容、激励器腔体体积和射流出口直径对三电极等离子体合成射流流场分布及速度特性的影响.实验结果表明:三电极等离子体合成射流激励器放电过程包含触发、放电增强、放电衰减和电弧熄灭四个阶段,表现出典型的欠阻尼放电特征;等离子体合成射流流场包含射流主流、前驱激波和复杂的反射波系.放电电容、腔体体积和射流出口直径均存在一阈值,当电容和出口直径小于阈值、腔体体积大于阈值时,前驱激波以当地声速(约345m/s)恒速传播,否则前驱激波则以大于345m/s的速度传播,且与射流速度呈现相同的变化趋势,即随着放电电容和出口直径的增加而增大,随着腔体体积的增加而减小.
简介:针对亚轨道可重复使用运载器(SRLV)的应用需求,在将卫星投送到预定轨道同时确保SRLV安全返回的前提下,对基于记忆原理的轨迹/总体参数一体化优化方法进行了研究。记忆优化算法是一种具有全局收敛性的随机搜索方法,每次搜索的试探解优劣状态由记忆元来存储。利用记忆原理的记忆增强和遗忘规律来衡量优化搜索过程中试探解的状态,并以燃料最省作为优化指标。同时采用三种不同的搜索策略,实现对试探解的随机搜索,避免陷入局部极小问题,并以此来提高搜索速度。仿真表明:卫星入轨速度偏差小于2m/s,高度偏差小于10m,轨道倾角偏差小于0.0001°。SRLV最终与着陆场的位置偏差小于100m,速度偏差小于5m/s。相较于传统的轨迹优化方法,新方法适用于复杂的轨迹/参数一体化优化问题,搜索速度快,求解精度高,有利于算法在工程实际中的应用与推广。
简介:陀螺的噪声是影响组合导航系统精度的重要因素之一。以农机多传感器组合导航系统为研究背景,在分析经验模态分解去噪和小波去噪的基础上,提出了一种基于自相关特性的经验模态分解去噪方法。该方法根据本证模态函数分量的自相关函数特性,提出了一种含噪本证模态函数筛选策略。该方法能够自适应地确定主要含噪的本证模态函数分量,避免了需要人为确定的不足;同时,结合改进小波阈值去噪的优势,避免了将混叠在噪声中的有效信号完全消除,使其具有一定的自适应性。为了验证方法的有效性,利用农机组合导航系统中微机械陀螺的实际输出数据,分别采用改进阈值小波去噪方法、经验模态分解去噪和改进的经验模态分解去噪方法进行了对比试验。结果表明,改进经验模态分解去噪方法的效果要优于前者,在一定程度上能够改善农机多传感器组合导航系统的定位精度。
简介:温度是IMU及其他导航器件等精密仪器中需要监测的重要参数,传统的温度监测一般使用热电偶或者数字温度传感器(如DS18B20)等,监测程序复杂,功耗高,因此使用精密仪器中广泛采用的FPGA芯片独立完成高集成度、低功耗温度监测具有重要意义.在FPGA中通过搭建环形振荡器产生了自激振荡信号,该信号周期与FPGA芯片温度具有正相关性,通过对振荡信号周期的检测完成了对温度的监测,设计了一种以FPGA芯片同时作为敏感头和处理模块的温度传感器.通过对XilinxVirtex-2系列FPGA芯片进行实验,得到该传感器在-40℃~+60℃的范围内具有优于0.1℃的分辨率,优于0.5℃的检测精度,满足一般温度监测需要.实验表明该传感器具有功耗低、集成度高、可靠性好等优点.
简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。