简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。
简介:开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:为了填补船测海深数据空白,给出了海底地形起伏与重力异常和重力异常垂直梯度之间的导纳函数关系。据此,以测高重力异常、重力异常垂直梯度作为输入数据,采用线性回归分析技术,在西南太平洋相关海域开展了海底地形反演试验。结果表明,通过不同方法获取的比例因子与海底地形呈现一定的内在联系,地形平坦海域,比例因子较小;海山分布较多的地形起伏较大的海域,比例因子相对较大,反映了重力数据与海底地形较强的相关性。同时,采用线性回归方法构建的海底地形模型检核精度最高,相较于传统方法获取的海底地形模型,精度最高提升了46%左右,与ETOPO1海深模型和DTU10海深模型相比较,模型精度最大提高了近一倍有余。另外,不同方法对于不同的海底地形具有各自不同的优势,靠近海山区域,采用线性回归技术反演的海深结果优于传统方法;在海山部分,传统方法反演精度又好于线性回归技术。不同数据源反演海底地形的统计结果表明,以重力异常垂直梯度构建的海底地形模型的检核精度优于以重力异常作为输入数据构建的海底地形模型。
简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:以SINSiGPS组合导航系统为背景,在对Kalman滤波原理和工程应用进行深入分析的基础上,总结了该方法的不足,提出了应用神经网络和模糊推理技术对系统噪声、观测噪声和其相关阵进行直接调控的方法。该方法根据新息和新息方差的变化,实时调整自适应因子,间接改变Kalman滤波器的当前观测量和过去信息的比例关系。仿真结果表明,该算法对模型和噪声干扰有较强的自适应性,能够有效抑制滤波发散,在不损失原有精度的前提下,提高了系统的鲁棒性。
简介:超燃冲压发动机的正推力问题和超声速燃烧的稳定性问题是制约超燃冲压发动机发展的两个关键气动物理问题.虽然经过50多年的研究,但是目前国内外对这两个关键问题的机理还没有研究清楚.文章首次将CJ爆轰理论应用于超燃冲压发动机推进性能分析,给出了这两个关键气动问题的理论分析结果.分析结果表明,燃烧室入口空气静温对发动机的推进性能产生重要影响.当爆轰波的爆速大于隔离段内空气来流的速度时,会向隔离段上游传播,导致发动机不起动.飞行Mach数Ma=6-8是超燃发动机的临界不稳定范围,飞行Mach数Ma〉9,超声速燃烧将变得稳定.
简介:舰载机进行紧急作战任务时,可能会先快速起飞,然后再进行空中对准。为了保证对准结束进入惯性导航模式后,惯导系统能够达到一定精度指标,对准结束时刻的姿态信息需要达到一定的精度要求。空中对准过程一般可分为粗对准和精对准两部分,对准结束时刻的姿态精度由粗对准结束时刻的导航误差、惯性器件误差、重力场模型误差和对准过程中的飞行机动等多个因素决定。首先利用设计的协方差分析方法,对两种不同空中对准方案进行误差分配,并通过Monte-Carlo仿真技术对误差分配结果进行了验证。仿真结果说明了提出的误差分析方法是正确的,为空中对准方案的改进方向提供了借鉴作用。