简介:舰载机进行紧急作战任务时,可能会先快速起飞,然后再进行空中对准。为了保证对准结束进入惯性导航模式后,惯导系统能够达到一定精度指标,对准结束时刻的姿态信息需要达到一定的精度要求。空中对准过程一般可分为粗对准和精对准两部分,对准结束时刻的姿态精度由粗对准结束时刻的导航误差、惯性器件误差、重力场模型误差和对准过程中的飞行机动等多个因素决定。首先利用设计的协方差分析方法,对两种不同空中对准方案进行误差分配,并通过Monte-Carlo仿真技术对误差分配结果进行了验证。仿真结果说明了提出的误差分析方法是正确的,为空中对准方案的改进方向提供了借鉴作用。
简介:超燃冲压发动机的正推力问题和超声速燃烧的稳定性问题是制约超燃冲压发动机发展的两个关键气动物理问题.虽然经过50多年的研究,但是目前国内外对这两个关键问题的机理还没有研究清楚.文章首次将CJ爆轰理论应用于超燃冲压发动机推进性能分析,给出了这两个关键气动问题的理论分析结果.分析结果表明,燃烧室入口空气静温对发动机的推进性能产生重要影响.当爆轰波的爆速大于隔离段内空气来流的速度时,会向隔离段上游传播,导致发动机不起动.飞行Mach数Ma=6-8是超燃发动机的临界不稳定范围,飞行Mach数Ma〉9,超声速燃烧将变得稳定.
简介:低Reynolds数流动由于自身特点导致气动特性严重恶化,非定常、非线性效应突出且预测困难,加之相关基础理论研究不足,给以临近空间低速飞行器和高性能微小型飞行器为代表的低Reynolds数飞行器的开发和研制带来了瓶颈和挑战.首先概述了飞行器低Reynolds数的范畴、低Reynolds数空气动力学的主要问题与挑战.随后从低Reynolds数层流分离基础理论出发,依次介绍了低Reynolds数层流分离经典理论、低Reynolds数层流分离非定常流动特性、低Reynolds数后缘层流分离泡.在此基础上,通过对经典长层流分离泡与后缘层流分离泡力学特性的差异以及随攻角和Reynolds数的演化规律的详细分析,逐步揭示了一些低Reynolds数复杂气动效应的本质,如小攻角升力系数的非线性效应,翼型随Reynolds数下降气动特性的二次恶化效应等.最后对低Reynolds数流动基础理论的发展过程进行了总结,并对层流分离诱导转捩及再附效应等复杂流动问题进行了展望.
简介:气动声学的声比拟理论以密度、声压等标量为波动算子变量,建立非齐次波动方程,描述流体运动及与边界作用诱发声音的辐射,但标量无法直接描述声能量的传播过程和途径.在流体力学研究中,标量用于描述当前当地的物质状态,而矢量用于描述质量和能量的传输.借鉴上述思想,开展了矢量气动声学的研究,概述矢量气动声学的理论研究进展及应用,主要包括:(1)以声粒子速度为变量,采用声比拟理论的思想直接从Navier-Stokes方程出发推导建立了气动声学的矢量波动方程及两种频域解;(2)综合利用声压和声粒子速度的积分解,直接求解声源周围的瞬时和有功声强矢量场,直观显示声能量的传播途径,应用于旋转声源辐射声能量的传播分析,揭示了亚音速旋转声源辐射声能量的3种传播模式:螺旋模式、声学黑洞模式和R-A模式;(3)采用球谐级数展开方法建立旋转点/紧凑声源辐射噪声的声压和声粒子速度的频域解析解,在此基础上推导了声功率谱的频域解析解,建立了识别旋转叶片声源在空间域和频域分布特征的方法;(4)综合利用矢量气动声学方法和等效源方法,显示声源和散射边界周围声强矢量场的分布特征和能量传播途径,直接揭示了阻抗边界主要的吸声位置以及直接计算得到阻抗边界的吸收声功率.
简介:针对传统无陀螺捷联惯导系统角速度求解复杂,解算效率低,惯性元件安装精度要求高等问题,提出一种新型的无陀螺捷联惯导导航方案,将8-UPS型并联式六维加速度传感器作为其惯性元件,直接测量出运载体的六维绝对加速度。基于矢量力学理论,推导了其惯导基本方程;通过数值积分运算来提取载体的线运动参量;运用空间几何理论建立姿态方程,实时更新捷联矩阵以获取载体的角运动参量,从而完成了导航建模与解算。仿真结果表明该系统能满足航行体中精度实时导航的要求,是有效可行的。与同类导航相比,该系统具有结构紧凑、解算效率高、物理模型误差敏感性低等优势。
简介:在GPS/IMU组合导航系统中,由于GPS的校正作用,系统输出的导航数据存在周期的阶跃式跳变(典型的校正周期为1s),对于SAR成像运动补偿而言,这相当于引入了高频测量噪声,会严重影响雷达成像质量。为解决该问题,系统另外引入了一个捷联解算模块。为保证该模块输出的数据平滑且精度稳定,受跟踪随动控制系统的设计思想启发,从控制理论的角度对系统进行了数学建模,设计了捷联解算模块对组合导航系统的跟踪环路,给出了环路中关键模块“环路滤波器”的设计方法。该方案实现了在不影响系统测量带宽的情况下,组合导航系统对捷联解算模块的高频、连续、平滑校正。仿真及实验结果证明了该方案的有效性及可行性。
简介:飞行器再入大气层时的姿态稳定性事关飞行安全,是气动设计的关键问题之一.文章采用非线性自治动力系统分叉理论,耦合求解非定常Navier-Stokes方程和俯仰运动方程,研究了钝体和细长体两类航天飞行器再入过程单自由度俯仰运动失稳问题.研究表明,航天飞行器再入时,如果仅有1个配平攻角,随Mach数降低,其配平攻角处的俯仰姿态失稳一般对应于Hopf分叉,并存在亚临界Hopf分叉和超临界Hopf分叉两种失稳形态;如果再入时随着Mach数的降低,其配平攻角由1个演化至多个(一般为3个),其配平攻角处的俯仰姿态失稳形态将更为复杂,可能发生鞍结点分叉形态的刚性失稳行为;随Mach数的进一步降低,其俯仰运动还可能进一步发生Hopf分叉和同宿分叉.
简介:目前国际上的激光陀螺单轴旋转式惯导系统中,普遍采用一种四位置转停的惯性测量组合转动方案。通过对这种四位置转停方案的误差分析,指出它并不能够完全抵消掉转轴垂直平面内的所有陀螺常值漂移误差,并且载体航向变化会降低误差抵消的程度。基于此,在这种四位置转停方案基础上,首先提出了一种改进的四位置转停方案,可以抵消掉转轴垂直平面内的所有陀螺常值漂移误差,然后进一步提出了一种动态调整停止时间的四位置转停方案,使转轴垂直平面内的常值漂移误差的抵消程度不受载体航向变化的影响。分析表明,文中提出的这些改进措施和方法能够提高系统精度,而不会降低系统的可靠性,并且使用简单易行,可以应用于实际的单轴旋转式惯导系统中。
简介:为了提高舰船惯性导航系统在动基座下的传递对准的精度和快速性,针对舰船平台的应用特点,采用卡尔曼滤波器对主、子惯导的“速度加角速率”参数的误差量进行滤波估计并进行了算法设计。运用卡尔曼滤波器的平滑算法改善传递对准的精度。针对卡尔曼滤波器平滑算法会降低对准速度的缺点,在只损失一小部分精度的前提下,创新性的采用卡尔曼滤波器的降阶算法提高了对准速度。通过Matlab软件对卡尔曼滤波器算法、卡尔曼滤波器平滑算法和卡尔曼滤波器平滑加降阶算法的速度误差和姿态误差分别进行了仿真。仿真结果表明,“速度加角速率”匹配传递对准改进算法具有稳健的对准精度和快速性,有一定工程应用参考价值。
简介:爆震燃烧近似为等容燃烧,理论上其热循环效率高于基于等压燃烧的爆燃燃烧,在超声速推进系统中具有潜在的应用价值.通过总结超声速气流中的爆震推进理论与研究进展,分析其需要解决的关键科学与技术问题,指导未来高超声速发动机的基础研究.文章重点总结了适用于高超声速飞行的斜爆震发动机、超声速脉冲爆震冲压发动机的基础研究进展.其中对斜爆震发动机的应用模式、相关实验研究思路及方法、数值仿真现状进行了总结分析.对超声速脉冲爆震冲压发动机的基础理论研究现状和目前研究的难点进行了梳理.基于爆震燃烧的超燃冲压发动机具有推进系统自增压、燃烧效率高、推力性能好、推进效率高、燃烧室长度短、结构重量轻等优势,文章总结了该发动机当前的发展进程和最新的研究进展,并对其未来的发展方向以及存在的技术问题进行了分析.
简介:壳核结构的微胶囊在医学药学材料食品农业等领域具有广泛的应用前景,其制备方法一直是相关领域关注的焦点.同轴流动聚焦(co-flowfocusing)是一种新型制备技术,利用复合射流的破碎制备微胶囊具有包裹率高过程量化可控参数域广产率高等诸多优势.在实验中,复合射流的破碎受到多个过程参数的影响,并涉及了多层界面的耦合效应.利用简化的物理模型,在时间和时空域中分析了三相水-油-水复合射流不稳定性的发展和演化.在黏性流体线性稳定性理论中,同轴射流和驱动液体的基本速度型分别基于管流和误差函数构造,并通过数值方法求解满足相应边界条件下的线化小扰动控制方程.结果表明:增加内外层界面的界面张力均有利于射流的破碎;流体的黏性对同轴射流的稳定性均有着促进作用;越大的黏性越小的内界面张力对应着越大的射流破碎波长;内外界面的耦合作用以及复合液滴的包裹情况均与内外射流的半径比息息相关;绝对-对流不稳定性转换的临界Weber数随Reynolds数内层界面张力的增大而增大,随内层和驱动流体的黏性增大而减小.这些结果将有助于提高液体驱动下同轴流动聚焦技术的过程控制,为实际应用提供理论指导.