简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:针对在4级海况下船体大幅度晃动,甚至丢失GPS信号的复杂环境,常规算法会导致姿态测量精度急剧下降的情形,为‘动中通’中的航姿系统设计了一套姿态融合算法。在GPS有效时,卡尔曼滤波的观测量引入双天线GPS输出的航向角,解决航向角观测性弱和估计不准的问题,同时引入互补滤波得到的陀螺修正量,提高了水平姿态角的可观性,融合两种算法提高了解算精度。在GPS无效时,通过互补滤波,抑制陀螺漂移,输出高精度水平姿态角,配合天线所接收信号的强度使‘动中通’正常工作。为验证算法的有效性,进行了动态实验,实验结果表明:该算法在GPS有效的情况下能保证俯仰滚动角(RMSE标准)精度在0.2°以内,航向角精度在0.5°以内,在GPS无效情况下也可使俯仰和滚动角精度长时间维持在0.3°以内,具有一定的工程应用价值。
简介:为了提高非线性卫星姿态控制系统的滤波性能,在建立了采用磁强计及太阳敏感器的卫星姿态模型的基础上尝试了新兴的粒子滤波(PF)算法对卫星系统进行姿态估计,进而对采用矢量观测的三轴稳定卫星的姿态确定问题进行了滤波算法的实时仿真,并将四元数转换成旋转矢量引入了粒子滤波算法,最后给出了卫星模型在不同粒子数目下的滤波性能比较,并在系统初始误差较大的情况下将粒子滤波算法与EKF滤波算法进行了滤波性能的对照。仿真结果表明,粒子滤波算法对粒子数目具有明显的依赖性,但是当粒子达到一定的数目时,粒子滤波的精度以及滤波稳定性都可以得到保证,尤其是在系统初始误差较大的情况下粒子滤波算法更显示了其优于EKF算法的滤波性能。
简介:以SINSiGPS组合导航系统为背景,在对Kalman滤波原理和工程应用进行深入分析的基础上,总结了该方法的不足,提出了应用神经网络和模糊推理技术对系统噪声、观测噪声和其相关阵进行直接调控的方法。该方法根据新息和新息方差的变化,实时调整自适应因子,间接改变Kalman滤波器的当前观测量和过去信息的比例关系。仿真结果表明,该算法对模型和噪声干扰有较强的自适应性,能够有效抑制滤波发散,在不损失原有精度的前提下,提高了系统的鲁棒性。
简介:制导炮弹控制系统要求炮弹飞行姿态测量信息具有良好的准确性和实时性。为解决制导炮弹飞行姿态的高精度滤波估计问题,根据外弹道攻角运动方程和MEMS角速度陀螺测量方程分别建立姿态角滤波系统状态模型和量测模型。考虑实际陀螺随机白噪声的影响,结合弹载全球定位系统信息及地面弹道试验数据,并利用非线性卡尔曼滤波估计方法,对制导炮弹飞行姿态进行了滤波估计。为提高滤波估计效率,对比了Unscented卡尔曼滤波和一种混合卡尔曼滤波两种非线性滤波估计方法,滤波估计结果表明两种方法得到的姿态精度均能满足测量要求,而运算效率后者相对前者可提高约6%,稳定性也较好,因此在工程上更实用。
简介:Schuler振荡阻尼技术是提高惯导长期工作精度的关键技术之一。针对采用低阶阻尼网络的惯导系统抑制高频和低频参考速度误差难以兼顾的问题,基于互补滤波思想,提出一种高阶水平阻尼网络设计方法。将两个采用低阶网络、分别具有优良高频和低频特性的Schuler回路通过一对互补滤波器进行组合,形成双Schuler回路组合系统。它等效于采用某高阶网络的单Schuler回路,该回路对高频和低频参考速度误差的衰减率可同时达到40dB/10deg或更高。计算机仿真和海上试验结果均表明:采用所设计高阶网络的系统对参考速度误差兼有优良的高频和低频滤波特性,综合滤波性能优于采用低阶阻尼网络的系统,具有工程应用价值。
简介:传统动基座传递对准主要采用扩展卡尔曼滤波技术。但在动基座传递对准的非线性、非高斯条件下,这种基于模型线性化和高斯假设的滤波方法在估计系统状态及其方差时误差较大且可能发散。混合退火粒子滤波针对非线性、非高斯系统状态的在线估计问题,提出一种新的基于序贯重要性抽样的粒子滤波算法。在滤波算法中,用状态参数分解和退火系数来产生重要性概率密度函数,此概率密度函数综合考虑了转移先验、似然、噪声的统计特性以及最新的观察数据,因此更接近于系统状态的后验概率。实验仿真结果表明,这种基于混合退火粒子滤波器不仅比扩展卡尔曼滤波提高了传递对准的精度,而且又比传统的粒子算法减少了时间。