简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:微尺度流动能够一步到位地制备不同结构和功能、尺寸在微米量级的复合液滴.文章回顾了几种常见的基于复合液滴的微尺度流动方法,包括同轴电雾化、复合流动聚焦、微流控芯片、玻璃微毛细管等,并对各种技术的原理和进展进行了简要概括和分析.在这类流动中,不同种类的流体在一定的几何结构通道或外力场作用下平稳地拉伸成微细射流并最终破碎成复合液滴.在同轴电雾化和复合流动聚焦技术中,从毛细管流出的流体能够形成稳定的锥-射流结构,当外力作用改变时能够形成不同的流动模式.在微流控芯片和玻璃微毛细管技术中,流体被约束在固定管道内,不同管道构型下能够形成不同的流动形态.这些方法都采用纯物理机理,过程稳定、易于操作,制备的复合液滴粒径可控,单分散性好,微观结构可设计,在科学研究和工程实际中具有重要的应用价值.
简介:文章以生物纳米通道及纳米孔中的离子传输及化学反应为背景,以离子流整流、电渗流整流、离子积累耗散模型为理论基础,使用有限元数值计算方法研究压力及电场交互作用下的锥形纳米孔孔内离子浓度分布及速度场分布现象.分析了不同电压下压力和电场的交互作用对锥形纳米孔中速度场、流场及浓度分布的影响.结果表明纳米孔孔内氢离子运动方向主要受电场方向影响.由于静电吸附效应,沿着孔壁流动的电渗流中的氢离子浓度会高于体溶液中的氢离子浓度.当电压较小时,流场方向主要受压力流的影响,当电压较大时,流场流动方向由电渗流带动的流体流动和压力驱动的流体流动共同决定.
简介:文章从静力和动力学的角度简要回顾了关于沿内角的自发毛细流动研究的最近进展.作为一个通用几何形状,内角在地面微观尺度下或处于失重状态的航天飞行器系统内大尺度下为液体提供有效的输运通道.当一定的几何条件得到满足并且当毛细力远远大于体力比如重力的时候,沿着内角会发生自发毛细力驱动流动现象.从静力学的角度来说,本文讨论的自发毛细驱动流动和当特定的边界条件发生突然变化,比如重力作用突然消失时带有内角的容器内部单值有限高度的平衡自由面的非存在性有关系.Concus-Finn方法可以用来确定这样的平衡自由面在一个横截面处处一致的柱形容器内的非存在性.用这个方法可以推导出在失重状态下一个内角为2α的通常柱形容器里,当接触角小于π/2-α时,平衡曲面不存在.通常来说,沿内角的自发毛细驱动流动属于层流.利用尺度分析和摄动法,成功分析了该流动的动力学特性,并且推导出对设计有用的封闭形式的解析解.一个典型的结果是在黏性流的范畴里毛细面端点的移动和t~(1/2)成正比.
简介:对高超声速压缩拐角流动中Grtler涡特性及热流分布进行了实验研究.开发了温敏漆(temperaturesensitivepaint,TSP)系统,简要介绍了TSP技术的原理、文章所用的TSP涂料的标定曲线、辅助设备参数、实验过程数据后处理过程,采用基于离散Fourier定律的热流算法.研究在Ma=6低噪声风洞中进行,采用TSP技术,得到压缩拐角斜坡板上的热流分布图像,并对高低热流条带现象做出解释,与Grtler涡有对应关系.通过改变拐角角度及来流参数,获得了不同拐角和单位Reynolds数条件下的热流分布图像,分析得到压缩拐角斜坡上Grtler涡特性及热流分布在变参数条件下的变化规律.研究发现:当增加拐角角度或增大单位Reynolds数时,Grtler涡的波长减小,且涡的起始位置更靠近拐角;随单位Reynolds数增加,斜坡上热流值整体增加,热流峰值位置前移;峰值位置后,热流缓慢减小的区域与Grtler涡位置相对应.
简介:文章详细讨论了两类非对称涡流动诱发的模型摇滚运动.第1类是针对旋成体机身组合体模型,其摇滚运动是由前体非对称涡流动诱发的,运功形态呈现不确定性,由模型头尖部的扰动触发形成.文章提出了快速旋转头尖部扰动的控制技术,以抑制该类模型的大攻角摇滚运动.第2类是针对非常规机身的组合体模型,其摇滚运动的主控流动是非常规机身和机翼的前缘分离涡流动,这些流动是由组合体模型的边界条件确定的,从而运动形态具有很好的确定性.所以,这类模型的自由摇滚运动必须通过改变边界条件来改变诱发摇滚运动的流动,以达到抑制模型自由摇滚运动的目的.最后,文章还讨论了这类运动是由非对称的机翼涡涡强主控的.
简介:研究翼型绕流的转捩预测方法,对于翼型流动细节的精确模拟和气动力的准确计算以及精细化设计均具有十分重要的意义.采用动模态分解(dynamicmodedecomposition,DMD)代替线性稳定性理论(linearstabilitytheory,LST)与e^N方法结合,不需要求解稳定性方程,成为一种数据驱动的翼型边界层转捩预测新方法,称为DMD/e^N方法.在原有方法的基础上,改进了DMD网格线生成方法和扰动放大N因子的积分策略,并将RANS求解器与改进的DMD/e^N方法进行耦合,实现了翼型定常绕流转捩预测自动化.采用该方法对LSC72613跨声速自然层流翼型以及NLF0416低速自然层流翼型在不同攻角下的绕流进行转捩预测,转捩点计算结果均与实验值和LST/e^N方法吻合良好.该方法计算得到的N值增长曲线与LST/e^N方法的包络线也较为吻合,进一步验证了积分策略的正确性.改进的DMD/e^N方法可作为自然层流翼型设计的新的有力工具.
简介:严重事故下核电安全壳内由于几何与流动的复杂性,需要有可靠的程序对流动进行分析评估.文章采用符合核电安全标准的开源CFD程序Code_Saturne对壳内气体流动进行计算,主要模拟壳内氢气和水蒸气喷放过程.该过程涉及多组分气体低速流动计算浮力效应引起的分层固体结构热传导结构表面与气体之间的热流和冷凝的计算.该程序使用了SIMPLEC格式并添加了低Mach数气体流动算法,基于理想气体模型的多组分模型和薄板结构上的一维热传导模型.同时,在此基础上改进了壁面函数方法,对壁面进行对流传热和传质流动计算.最后利用两个国际化标准问题对该程序及使用的模型进行了验证.
简介:采用高精度格式求解二维Navier-Stokes方程研究超声速射流与同向超声速后台阶流动相互作用的流场基本结构及规律,分别应用5阶WENO格式、6阶中心差分格式离散对流项和黏性项,时间推进采用3阶Runge-Kutta格式,并应用消息传递接口(messagepassinginterface,MPI)非阻塞式通信实现并行化.分别研究了超声速后台阶流动、超声速射流的基本结构特征,以此讨论和分析超声速后台阶流动/射流相互作用的特征,以及不同来流条件对波系结构、涡结构、剪切层、膨胀扇等的影响,尤其是来流剪切层和射流剪切层的相互作用,形成复杂的波系结构及相互干扰的流动现象.
简介:在Mach数3.4的来流条件下,对二维后台阶流动精细结构开展了实验研究.实验分为后台阶上游无控制加粗糙带扰动及微涡流发生器(micro-vortexgenerator,MVG)扰动3种状态,采用基于纳米示踪的平面激光散射(nano-tracerbasedplanarlaserscattering,NPLS)方法获得了流向和展向切面内的高时空分辨率流动显示图像,并测量了模型表面静压分布.对大量NPLS图像取平均,研究了流场结构的时间平均规律,对比不同时刻的瞬态流场精细结构图像,发现不同状态下的湍流大尺度结构的特征时间.有粗糙带状态相对无粗糙带台阶下游回流区压力更低,而下游压力较高,台阶上游区别不大;受MVG控制后台阶下游附近区域压力突增;MVG对流动的控制改变能力较强,粗糙带能调整台阶上下游附近流动平稳过渡,流场壁面压力没有突变.
简介:基于vonKarman长度尺度和新型Reynolds应力本构关系对κ-ε瑞流模型重构,将k方程封闭,米用代数形式对瑞流耗散项进行模化.在KDO(kineticdependentonly)模型的基础上,引入可压缩vonKarman长度尺度,得到一种适用于复杂可压缩流动的新型瑞流模型CKDO(compressiblekineticdependentonly),在CKDO模型中没有任何经验系数,仅有两个来自边界层精细化标定的可调参数.对RAE2822翼型、轴对称圆筒管道凸起流动、ONERA-M6机翼跨声速流动等算例进行数值计算,结果显示CKDO湍流模型对上述算例流场的压力系数模拟结果与实验值吻合较好,表明CKDO模型能够对跨声速流场进行较为准确的模拟.
简介:为解决自由振动式动导数试验技术在大尺度高超声速风洞中,高气动载荷环境与低频率模拟要求之间的突出矛盾,进一步提高高超声速飞行器较低气动阻尼的测量精度,发展了基于组合式动导数天平的Ф1m量级高超声速风洞自由振动试验技术.设计组合式动导数天平,轴承组件承载模型轴向和法向气动力,弹性应变梁提供系统恢复力矩,并可根据减缩频率的要求调整系统自由振动频率,有效提高了天平承载能力,拓展了试验频率模拟范围.在中国空气动力研究与发展中心Ф1m高超声速风洞,利用本系统进行了10°半锥角不同钝度圆锥标模俯仰动导数校测试验,所测俯仰动导数与文献结果最大相对误差在6%以内,验证了试验系统和测试结果具有较好的稳定性与重复性.
简介:基于非结构/混合网格、耗散自适应2阶混合格式以及脱体涡模拟(detachededdysimulation,DES)方法开展了现代战斗机模型复杂分离流动的数值模拟,并与有限的平均气动力试验数据进行了对比,结果表明计算具有合理性,在此基础上进一步应用本征正交分解(properorthogonaldecomposition,POD)和动力学模态分解(dynamicmodedecomposition,DMD)方法对数值模拟流场的非定常特性进行了对比分析.研究表明飞行器背风区流场由一对边条涡的螺旋运动主导,旋涡破裂前在横向空间截面上流场是中性稳定的,同时主涡核的运动是多频耦合的.POD和DMD的对比分析则表明:两者模态配对的方式不同,但主要模态之间具有一定相关性;POD模态中包含多种频率的运动,而且能量较集中于主模态,流场重构效率更高;DMD则将流场的主要特征运动提取为一些单频模态的组合,同时能够给出模态的稳定性.
简介:为研究转捩与湍流对激波边界层干扰及底部流动结构的影响,文章选取了二维与三维高超声速双斜面进气道模型与大钝头着陆器模型,并使用γ-Reθ转捩模型开展数值模拟研究.研究表明,对于二维进气道模型,随着前缘钝度的增加,激波边界层干扰位置前移,分离区变大,与层流流动情况相比,有转捩流动发生时,激波边界层干扰位置后移,同时分离流动强度变弱,分离区缩小;对于三维进气道模型,其拐角附近的分离流动呈现明显的三维特征,转捩流动也存在三维流动结构,与静风洞状态相比,噪音风洞状态下,有转捩流动发生,对壁面热流影响较大,对激波系影响很小.对于着陆器模型,底部流动发生转捩,使得底部流动由不稳定非定常的流动结构变为稳定定常的流动结构,这有益于姿态控制设计.
简介:纳米孔隙内气体流动的理论预测对气体微流控器件的设计和制造具有重要的理论指导作用,文章采用分子动力学方法研究了氮气、氧气和二氧化碳混合气体在平行壁纳米孔隙内的剪切流动特性和边界滑移特性.研究结果表明:随着加入二氧化碳比例的不断增加,混合气体滑移速度不断增大,并且当二氧化碳的比例低于20%时,混合气体流动速度沿孔隙宽度方向呈线性分布;而当比例达到40%后,其速度轮廓将呈现非线性趋势.当二氧化碳所占比例为20%时,随着孔隙宽度的增加,混合气体的整体边界滑移随之减小.探究了混合气体密度和气-固耦合强度对混合气体流动及边界滑移的影响机理.发现随着混合气体密度的减小,气流边界滑移增大;随着气-固界面耦合强度的增强,边界气体分子易被吸附而出现黏滑运动,气体分子在边界处的积聚现象增强,剪切应变率增大,边界滑移减小.