学科分类
/ 1
2 个结果
  • 简介:为了填补船测海深数据空白,给出了海底地形起伏与重力异常和重力异常垂直梯度之间的导纳函数关系。据此,以测高重力异常、重力异常垂直梯度作为输入数据,采用线性回归分析技术,在西南太平洋相关海域开展了海底地形反演试验。结果表明,通过不同方法获取的比例因子与海底地形呈现一定的内在联系,地形平坦海域,比例因子较小;海山分布较多的地形起伏较大的海域,比例因子相对较大,反映了重力数据与海底地形较强的相关性。同时,采用线性回归方法构建的海底地形模型检核精度最高,相较于传统方法获取的海底地形模型,精度最高提升了46%左右,与ETOPO1海深模型和DTU10海深模型相比较,模型精度最大提高了近一倍有余。另外,不同方法对于不同的海底地形具有各自不同的优势,靠近海山区域,采用线性回归技术反演的海深结果优于传统方法;在海山部分,传统方法反演精度又好于线性回归技术。不同数据源反演海底地形的统计结果表明,以重力异常垂直梯度构建的海底地形模型的检核精度优于以重力异常作为输入数据构建的海底地形模型。

  • 标签: 重力异常 重力异常垂直梯度 海底地形 线性回归 地壳均衡
  • 简介:为了预测某导弹陀螺漂移趋势,以该陀螺漂移角速度时间序列为对象,建立了基于支持向量回归机的预测模型。针对该预测模型的特点,提出了支持向量预选取的模型优化方法。基于ε不敏感损失函数的支持向量回归机具有稀疏性,其结构由支持向量决定。因此从训练样本集中预选出有可能成为支持向量的样本,精简样本规模是提高该类支持向量回归机训练和预测效率的有效方法。针对该类支持向量回归机从分类和回归两个角度分析了支持向量的几何特征,提出了核函数空间免疫聚类的支持向量预选取方法并用于某导弹陀螺漂移预测模型的数据预处理。仿真结果表明优化后的预测模型运算量小、建模速度快,精度高。

  • 标签: 支持向量回归机 免疫聚类 时间序列建模 陀螺漂移