简介:本文将改进的灰色GM(1,1)模型用于某油田年综合含水率的近期发展趋势研究。在平均相对误差达到最小准则下,研究了模型中的背景值参数A和边值修正项£对模型预测精度的影响。在此基础上,采用线性规划方法估计模型中的参数,基于遗传算法求解最佳背景值参数A和最佳边值修正项ε,以确保在相应的模型检验准则下预测的误差达到最小。结果表明,用改进的灰色GM(1,1)模型预测近期注水油田的综合含水率,预测值与实际值相对误差很小,预测精度很高,可以得到非常满意的结果。进一步的研究发现,改进的灰色GM(1,1)模型虽然近期预测精度很高,但研究长期的发展趋势是行不通的,为此又研究探讨了长期发展趋势模型。
简介:设(x*,y*)是以A=[aij]m×n为赢得矩阵G的对策解,则当局中人1,2各自独立地使用其最优策略x*=(x*1,x*2,…,xmn),y*=(y*1,y*2,…,y*n)时,局中人1的赢得期望为对策值v*=x*Ay*T.若局中人双方使用使得方差D(x*,y*)=∑∑(aij-v*)2x*iy*j达最小的对策解(x*,y*),则其赢得靠近v*的概率达到最大.以O记使方差达到最小的对策解的集合.若O满足(x(1),y(1)),(x(2),y(2))∈O蕴涵(x(1),y(2)),(x(2),y(1))∈O,则说O是可换的.本文首先证明了:若矩阵对策G有纯解,则O是可换的.然后证明了如果限定局中人1在其混合扩充策略集的一个非空紧凸子集X中选取策略,那么存在X的一个非空紧子集O(X),它是有限个非空互不相交紧凸集之并,使得只要局中人1使用O(X)中的策略,那么在最坏的情况下可以取得最好的赢得.