简介:随着工业化、城镇化进程的不断加快,我国电力需求量将持续上升。电力的充足供应是我国经济稳步发展的重要保证,故合理准确的对电力需求进行分析及预测具有重要的现实意义。基于此,分析我国电力需求现状,利用通径分析筛选电力消费需求的核心驱动因素。在模型选择的基础上,基于单变量(ETS、ARIMA模型)和多变量(情景分析)两个维度进行电力需求量分析及预测。结果表明:GDP每提高1%使得电力需求量提高0.5249%;工业化水平每提高1%使得电力需求量提高2.2146%,城镇化水平每提高1%使电力需求量相应提高1.0076%。“十二五”末中国电力消费需求量将近61425.96KW/h,2020年中国电力消费需求将近81410.10KW/h。
简介:本文通过将定性分析与关系图描述相结合,提出H1:城镇化对经济发展具有显著正向促进作用、H2:城镇化可通过消费渠道影响经济发展、H3:城镇化可通过投资渠道影响经济发展、H4:城镇化可通过出口渠道影响经济发展四项研究假设。进一步,根据地区实际经济发展水平,将我国划分为发达与欠发达两类地区。设定经济发展变量PGDP为被解释变量,城镇化变量UR、城镇化与投资交互项变量UR×PFI、城镇化与消费交互项变量UR×HC和城镇化与出口交互项变量UR×PE为被解释变量,采用2000—2012年我国31个省市区的面板数据。基于单位根检验、协整关系检验、F检验、Hausman检验,建立个体固定效应模型,验证假设H1~H4在全国及两类地区是否成立。结果表明:H1、H2、H3假设在全国及两类地区均成立;H4假设仅在欠发达地区成立。基于研究结论,本文提出了相应的启示。
简介:我国权证市场是一个新兴市场,权证市场价格与理论价格长期存在较大偏离。本文以中化CWB1为例,首先运用修正的Black—Scholes公式计算权证的理论价格,证明权证价格偏误的存在主要不来源于模型设定误差,而是与标的股票价格相关。再运用计量经济学的方法讨论权证价格偏误和标的股票价格的协整关系,并建立误差修正模型以定量地描述二者之间的短期波动关系。最后从理论上分析我国权证市场的发展现状和导致价格偏误的深层次原因。
简介:投资者进行投资实践时无不面临着背景风险。绝大多数以均值方差为框架的投资组合并没有考虑背景风险,其效用在实际应用中容易受到背景风险的影响。本文在含有交易费用的双目标函数模型中引入背景风险,从是否含有背景风险和背景风险偏好度大小两方面对投资组合问题展开研究,并使用智能算法得到模型的最优解,对模型进行实证分析。实证结果表明:1)当背景风险收益为0时,含有背景风险的投资组合比不含有背景风险的投资组合更能反映真实的投资环境。2)当背景风险收益不为0时,含有背景风险的投资组合比不含有背景风险的投资组合得到更高的收益。因此,考虑背景风险后投资组合的构建优于不考虑背景风险投资组合的构建。
简介:本文研究的是多目标随机结盟对策的问题,是将单目标的随机结盟对策的ZS-值拓展到多目标的随机结盟对策上,同时考虑了局中人对不同目标的偏好程度,从而,给出了多目标随机结盟对策的ZS-值的定义,并讨论了该值的性质及定理。
简介:在对偶单纯形方法的基础上,提出了线性规划的目标函数最速递减算法.它避开求初始可行基或初始基,以目标函数全局快速递减作为选基准则,将选基过程与换基迭代合二为一,从而大大减少了迭代次数.数值算例显示了该算法的有效性和优越性.