简介:制造过程评价是改善制造系统效率的重要一环,传统的评价方法将每个制造系统决策单元视为黑箱来研究整体效率,忽略了中间产品转化信息及投入要素在各子过程中的配置信息。针对两阶段(第二阶段有外源性新投入)制造系统的效率评估问题,分别在固定规模报酬和可变规模报酬假设下,充分利用制造系统中间产品的转化及外源投入要素的配置信息,建立了制造系统网络DEA效率测度及分解模型,建模方法遵循客观评价原则,无需事先主观确定子效率和系统效率之间的组合关系。并将其应用于钢铁制造系统效率测度与分解,研究结果表明该方法能够挖掘决策单元内部子单元的效率情况,帮助决策者发现复杂制造过程非有效的根源,为复杂制造过程的整体效率测度及分解提供了有效的分析方法。
简介:为解决一次性n人囚徒困境中局中人如何走出困境的问题,引进了背叛惩罚函数及其严厉度和参与人的背叛愿意度等概念,并用数学论证法证明了如下结果:(1)参与人的背叛愿意度都不超过1。(2)背叛愿意度越大,这个参与人越愿意背叛;(3)背叛愿意度为0零时,这个参与人是否背叛其赢得一样;(4)当背叛愿意度取负数时,其绝对值越大,参与人的合作积极性越大。得到博弈结果的判定法:(1)计算各参与人的背叛愿意度。(2)若至少有一个参与人愿意背叛,则全体参与人都背叛。(3)若全体参与人都愿意合作,则合作成功。例子表明,本结果在理论上可有效地解决中局中人如何走出困境和在给定惩罚机制下博弈结果的预测问题。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:设P(G,λ)是图的色多项式。如果对任意使P(G,λ)=P(H,λ)的图H都与G同构.则称图G是色唯一图.这里通过比较t+1色类的色划分数目,讨论了由Koh和Teo在文献[1]中提出的问题(若│ni-nj│≤2.当min(n1,n2,…,nt)充分大时,完全t部图K(n1,n2,…,nt)是否是色唯一图?)。改进了文献[5]中的结果。证明了若∑1≤i≤tai^2=T.min{n+a1,n+a2,….nt+at,n-1}≥(T+1)/2,则K(n+a1.n+a2,….n+a,)是色唯一图(其中ai是实数,n+ai是正整数)。从而证明了若│ni-nj│≤k(i.j=1,2.…,t).min{n1.n2,…,nt}≥tk^2/8+1.则K(n1,n2,…nt)是色唯一图。