简介:Ahybridtriplesystemofordervandindexλ,denotedbyHTS(v,λ),isapair(X,B)whereXisav-setandBisacollectionofcyclictriplesandtransitivetriplesonX,suchthateveryorderedpairofXbelongstoλtriplesofB.AnoverlargesetofdisjointHTS(v,λ),denotedbyOLHTS(v,λ),isacollection{(Y\{y},Ai)}i,suchthatYisa(v+1)-set,each(Y\{y},Ai)isanHTS(v,λ)andallAisformapartitionofallcyclictriplesandtransitivetriplesonY.Inthispaper,weshalldiscusstheexistenceproblemofOLHTS(v,λ)andgivethefollowingconclusion:thereexistsanOLHTS(v,λ)ifandonlyifλ=1,2,4,v≡0,1(mod3)andv≥4.
简介:AnegativecurvaturemethodisappliedtononlinearleastsquaresproblemswithindefiniteHessianapproximationmatrices.Withthespecialstructureofthemethod,anewswitchisproposedtoformahybridmethod.Numericalexperimentsshowthatthismethodisfeasibleandeffectiveforzero-residual,small-residualandlarge-residualproblems.
简介:它为几乎所有足够地大的甚至整数n被证明那,主要可变方程n=p_1+p_2,p_1∈P_γ是可解决的,与13/15<γ≤1,在此P_γ={p|p=[m~(1/γ)],为整数m和主要p}是Piatetski-Shapiro素数的集合。
简介:Solution-drivenmeshadaptationisbecomingquitepopularforspatialerrorcontrolinthenumericalsimulationofcomplexcomputationalphysicsapplications,suchasclimatemodeling.Typically,spatialadaptationisachievedbyelementsubdivision(hadaptation)withaprimarygoalofresolvingthelocallengthscalesofinterest.Asec-ond,less-popularmethodofspatialadaptivityiscalled'meshmotion'(radaptation);thesmoothrepositioningofmeshnodepointsaimedatresizingexistingelementstocapturethelocallengthscales.Thispaperproposesanadaptationmethodbasedonacombinationofbothelementsubdivisionandnodepointrepositioning(rhadaptation).Bycombiningthesetwomethodsusingthenotionofamobilityfunction,theproposedapproachseekstoincreasetheflexibilityandextensibilityofmeshmotionalgorithmswhileprovidingasomewhatsmoothertransitionbetweenrefinedregionsthanispro-ducedbyelementsubdivisionalone.Further,inanattempttosupporttherequirementsofaverygeneralclassofclimatesimulationapplications,theproposedmethodisde-signedtoaccommodateunstructured,polygonalmeshtopologiesinadditiontothemostpopularmeshtypes.
简介:Inthispapertheexistenceanduniquenessofthesolutionofimplicithybridmethods(IHMs)forsolvingtheinitialvalueproblems(IVPs)ofstiffordinarydifferentialequations(ODEs)isconsidered.Weprovidethecoefficientconditionanditsjudgingcriterionaswellastherighthandconditiontoensuretheexistingsolutionuniquely.
简介:BasedonthedataobtainedfromasurveyrecentlymadeinShanghai,thispaperpresentsthehybridtechniqueforriskanalysisandevaluationofsomediseases.Afterdeterminationofmainriskfactorsofthesediseasesbyanalysisofvariance,theauthorsintroduceanewconcept‘IllnessFuzzySet’andusefuzzycomprehensiveevaluationtoevaluatetheriskofsufferingfromadiseaseforresidents.Optimaltechniqueisusedtodeterminetheweightswiinfuzzycomprehensiveevaluation,andanewmethod‘ImprovedInformationDistribution’isalsointroducedforthetreatmentofsmallsampleproblem.Itisshownthattheresultsobtainedbyusingthehybridtechniquearebetterthanbyusingsinglefuzzytechniqueorsinglestatisticalmethod.
简介:Thispaperpresentsaclassofhybridone-stepmethodsthatareobtainedbyusingCramer’sruleandrationalapproximationstofunctionexp(q).Thealgorithmsfallintothecatalogueofimplicitformula,whichinvolvessthorderderivativeands+1freeparameters.Theorderofthealgorithmssatisfiess+1≤p≤2s+2.Thestabilityofthemethodsisalsostudied,necessaryandsufficientconditionsforA-stabilityandL-stabilityaregiven.Inaddition,someexamplesarealsogiventodemonstratethemethodpresented.
简介:AclassofhybridjumpdiffusionsmodulatedbyaMarkovchainisconsideredinthiswork.Themotivationstemsfrominsuranceriskmodels,andemergingapplicationsinproductionplanningandwirelesscommunications.Themodelsarehybridinthattheyinvolvebothcontinuousdynamicsanddiscreteevents.Undersuitableconditions,asymptoticexpansionsofthetransitiondensitiesfortheunderlyingprocessesaredeveloped,Theformalexpansionsarevalidatedandtheerrorboundsobtained.
简介:Ithasbeenevidentthatthetheoryandmethodsofdynamicderivativesareplayinganincreasinglyimportantrleinhybridmodelingandcomputations.Beingconstructedonvariouskindsofhybridgrids,thatis,timescales,dynamicderivativesoffersuperioraccuracyandflexibilityinapproximatingmathematicallyimportantnat-uralprocesseswithhard-to-predictsingularities,suchastheepidemicgrowthwithun-predictablejumpsizesandoptionmarketchangeswithhighuncertainties,ascom-paredwithconventionalderivatives.Inthisarticle,weshallreviewthenovelnewconcepts,exploredelicaterelationsbetweenthemostfrequentlyusedsecond-orderdy-namicderivativesandconventionalderivatives.Weshallinvestigatenecessarycondi-tionsforguaranteeingtheconsistencybetweenthetwoderivatives.Wewillshowthatsuchaconsistencymayneverexistingeneral.Thisimpliesthatthedynamicderivativesprovideentirelydifferentnewtoolsforsensitivemodelingandapproximationsonhy-bridgrids.Rigorouserroranalysiswillbegivenviaasymptoticexpansionsforfurthermodelingandcomputationalapplications.Numericalexperimentswillalsobegiven.
简介:Thepaperdevelopsexponentialstabilityoftheanalyticsolutionandconvergenceinprobabilityofthenumericalmethodforhighlynonlinearhybridstochasticpantographequation.Theclassicallineargrowthconditionisreplacedbypolynomialgrowthconditions,underwhichthereexistsauniqueglobalsolutionandthesolutionisalmostsurelyexponentiallystable.Onthebasisofaseriesoflemmas,thepaperestablishesanewcriteriononconvergenceinprobabilityoftheEuler-Maruyamaapproximatesolution.Thecriterionisverygeneralsothatmanyhighlynonlinearstochasticpantographequationscanobeytheseconditions.Ahighlynonlinearexampleisprovidedtoillustratethemaintheory.
简介:在这篇论文,出现在图形处理的一个二阶段的半混血儿流动商店问题被学习。为这个问题,有二台机器M_1和M_2,和一套独立工作J={J_1,J_2,…,J_n}。每J_i由二项任务组成在任务B_i能开始以前,A_i和B_i,和任务A_i必须被完成。而且,任务A_i能为a_i时间单位在M_1上被处理,否则在为′_的M_2上,我预定单位,当任务B_i能仅仅为b_i时间单位在M_2上被处理时。工作和机器在时间零点是可得到的,没有先买权被允许。目的是最小化最大的工作结束时间。这个问题是NP难的,这被显示出。并且apseudo多项式时间最佳的算法被介绍。有2也是的最坏的比率的一个多项式时间近似算法介绍了。
简介:InthispaperwestudythecomputationalperformanceofvariantsofanalgebraicadditiveSchwarzpreconditionerfortheSchurcomplementforthesolutionoflargesparselinearsystems.Inearlierworks,thelocalSchurcomplementswerecomputedexactlyusingasparsedirectsolver.Therobustnessofthepreconditionercomesatthepriceofthismemoryandtimeintensivecomputationthatisthemainbottleneckoftheapproachfortacklinghugeproblems.InthisworkweinvestigatetheuseofsparseapproximationofthedenselocalSchurcomplements.TheseapproximationsarecomputedusingapartialincompleteLUfactorization.Suchanumericalcalculationisthecoreofthemulti-levelincompletefactorizationsuchastheoneimplementedinpARMS.Thenumericalandcomputingperformanceofthenewnumericalschemeisillustratedonasetoflarge3Dconvection-diffusionproblems;preliminaryexperimentsonlinearsystemsarisingfromstructuralmechanicsarealsoreported.
简介:
简介:AparallelhybridlinearsolverbasedontheSchurcomplementmethodhasthepotentialtobalancetherobustnessofdirectsolverswiththeefficiencyofpreconditionediterativesolvers.However,whensolvinglarge-scalehighly-indefinitelinearsystems,thishybridsolveroftensuffersfromeitherslowconvergenceorlargememoryrequirementstosolvetheSchurcomplementsystems.Toovercomethischallenge,weinthispaperdiscusstechniquestopreprocesstheSchurcomplementsystemsinparallel.Numericalresultsofsolvinglarge-scalehighly-indefinitelinearsystemsfromvariousapplicationsdemonstratethatthesetechniquesimprovethereliabilityandperformanceofthehybridsolverandenableefficientsolutionsoftheselinearsystemsonhundredsofprocessors,whichwaspreviouslyinfeasibleusingexistingstate-of-the-artsolvers.
简介:Inthispaper,Chebyshevpseudospectral-finiteelementschemesareproposedforsolvingthreedimensionalvorticityequation.SomeapproximationresultsinnonisotropicSobolevspacesaregiven.Thegeneralizedstabilityandtheconvergenceareprovedstrictly.Thenumericalresultsshowtheadvantagesofthismethod.Thetechniqueinthispaperisalsoapplicabletootherthree-dimensionalnonlinearproblemsinfluiddynamics.