简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露性的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露性的刻画。
简介:设g1.g2为正规函数.对所有的0〈p.q〈∞,我们得到了Bergma型空间的加权Cesaro算子Tψ:Ag1^p→Ag2^q为有界算子和紧算子的充要条件.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文研究了一种修正的Shepard—Lagrange型插值算子在Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用光滑模、Hardy—Littlewood极大函数、N函数的凸性及Jensen不等式给出了该算子在Orlicz空间内的逼近度估计.
简介:深化对本性谱的认识;给出∑_e~n(n≥2)型Banach空间上的摄动类问题的反面回答.
简介:主要讨论由Lipschitz函数b与广义C-Z算子T生成的交换子[b,T]在加权Herz型Hardy空间上的有界性,证明了[6,T]从HKq1^α,p(w1,w2^q1)到HKq2^α,p(w1,w2^q2)的有界性.
简介:我们将得到广义凸空间上VonNeumann-Fan型supinfsup不等式,我们的结果对文[1]和[2]中的相应结论进行了改进和一般化.
简介:研究可分Banach空间中一类混合型的微分—积分包含,证明了解的存在性,其单值情形改进和推广了文[1~3]中关于混合型微分—积分方程的若干存在性结果。
简介:设A是一个每列至少有二个元素为1的不可约0,1方阵,(∑A,σA)为由A所决定的符号空间有限型子转移.在∑A上定义一个与其拓扑相容的度量d使得(∑A,d)的Hausdorff维数为1.若C是H1可测的σA的LiYorke混沌集,则H1(C)=0;若A是本原的,则存在一个σA的有限型混沌集S使得H1(S)=1,其中H1为1维的Hausdorff测度
简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.