简介:给出了r-置换因子循环矩阵的概念,并得到了一些性质,以及奇异性的判别方法。
简介:主要给出下面结果.即PXXn具有滴性和弱滴性的充分必要条件是每个Xn具有滴性和弱滴性条件.
简介:H.Mohebi与Sh.Rezapour在研究Banaeh空间中的逼近问题时,提出了quasi—Chebyshev子空间及ε-weaklyChebyshev子空间等概念,在文中作者就这些逼近性质在置换空间PBBs中进行了讨论.
简介:隶首注术辨析王为桐属算经十书之一的《数术记遗》中写道:“……叙问曰为算之体皆以积为名为复更有他法乎先生曰隶首注术及有多种及余遗忘记忆数事而已①其一积算其一太乙其一两仪其一三才其一五行其一八卦其一九宫其一运算其一了知其一成数其一把头其一龟算其一珠算其一...
简介:给出了置换因子循环矩阵A=PercircP(F_0^(k,h),F_1^(k,h),***,F_n-1^(k,h)和B=PercircP(L_0^(k,h),L_1^(k,h),***,L_n-1^(k,h)的谱范数的上界与下界,得到了矩阵A与B的Kronecker积与Hadamard积的谱范数的一些界.
简介:群G的子群H称为半置换的,若对任意的K≤G,只要(|H|,|K|)=1,就有HK=KH.H称为s-半置换的,若对任意的p||G|,只要(p,|H|)=1,就有PH=HP,其中P∈Sylp(G).本文研究Sylow子群的极大子群及极小子群的s-半置换性对有限群的p-超可解性的影响.
简介:所谓微积分的基本思想,就是人类的基本认知规律“用‘已知’解决‘未知”’在解决变量数学时的具体体现;用微积分的思想来指导微积分的教学,能使学生站在一个高的层次,高瞻远瞩的看问题,因此,学点“思想”甚至比多学点知识都更为重要,但是,要使广大教师能在教学中揭示、介绍学科的“思想”,就必须将其融入到教材之中。
简介:《齐鲁珠坛》1995年第四期刊登王为桐同志《隶首注术辨析》,(以下简称《辨析》),引起许多读者注意。该文强调珠算起源于汉末,距今约一千八百年;如谁超越此限,就说是“乱用史据和传证,混淆视听”;从而冠以“不合逻辑”,“想像悬源”的头衔。
简介:通过矩阵乘法运算的拆行拆列表示,巧妙地绕过初等矩阵,建立了矩阵乘积的初等变换术,进而导出了原来运用初等矩阵才能导出的有关初等变换、逆矩阵、矩阵方程、矩阵等价的若干重要结果.
简介:刘徽的“割圆术”是中国数学史上的重要成就之一,其中包含着中国数学家对无限问题的独特认识和致用的处理方式.很多高等数学教科书在讲述极限概念时大都提及,但所述,并未体现刘徽本意.刘徽的“割圆术”是为证明圆面积公式而设计出来的一种方法,其融合了庄、墨两家理解和处理无限问题的方法,并且使用了数列极限的“夹逼准则”和不可分量可积的预设.通过这些相关知识的历史考察,试图以HPM的方法来辅助解凄极限概念教学的难题.
r-置换因子循环矩阵的性质
置换空间上的滴性和弱滴性
置换空间PBBs中的一些逼近性质
隶首注术辨析
关于(k,h)-Fibonacci和(k,h)-Lucas数的置换因子循环矩阵的谱范数
s-半置换子群对有限群的p-超可解性的影响
从刘徽的割圆术谈起
关于《隶首注术辨析》之辨析
矩阵乘积的初等变换术及其应用
数学史与数学教育(HPM)的一个案例——刘徽的“割圆术”与微积分