学科分类
/ 1
3 个结果
  • 简介:对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(BayesianRPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有BayesianRPCA和MoG-RPCA提取出了完整的前景目标,但是BayesianRPCA计算速度很慢,且不能够处理复杂噪声.所以MoG-RPCA模型更具有对复杂噪声的适应性,动、静态背景情况下均提取出精度较高的前景目标,且具有较快的计算速度.当图像不稳定时,采用改进的MoG-RPCA模型对非稳定拍摄的抖动视频进行前景目标提取,并在第197帧抖动图像中清晰地提取出显著前景目标,且运算速度较快.在为了快速找到目标出现的帧时,对高斯混合模型背景差分法进行改进,利用K-means聚类算法快速得到聚类中心点,然后作为高斯混合模型背景更新时的初始化均值参数,从而提高在复杂场景下前景目标的检测精度.对于多角度追踪任务,不同角度、近似同一地点的多个监控视频图像中前景目标的提取,可采用跨摄像头视角跟踪结果融合的方法,然后对目标进行匹配.

  • 标签: 前景目标提取 MoG-RPCA模型 K-means高斯混合模型 多角度追踪
  • 简介:主要分析垃圾焚烧厂污染的排放问题,针对排放的气体污染,建立污染传播的对流扩散模型,考虑到风向、风速、降雨、混合层等多方面因素,对模型加以修正,利用迎风格式的有限元素法进行数值模拟;以深圳市某垃圾焚烧厂为例,模拟得到厂区周围方圆5km区域内污染浓度的分布情况,并对模拟数据进行聚类分析,根据季节性特征将监测点进行归并,得到全年的动态监测方案。

  • 标签: 对流扩散方程 迎风格式有限元素法 聚类分析 监测方案