简介:一、外珠加除法缘起传统珠算除法,实数和商数都通过内珠同向表示。"外珠除法"也不例外,不过是外珠同向表示,已不同于传统示数。即商数、实数都外珠表示,致使"除"由减积变为加积,但商数外珠表示看数不直观,而且算前所有的珠要靠框,是其不足之处。《外珠除法》1指出:"如果把算盘的二元示数,外珠极限为1;内外珠互补关系;负数引入;把外珠除法的置商用外珠改为用内珠表示;将会开拓珠算除法的领域。"
简介:简要介绍了图的关联着色问题的起源、发展情况及目前已有的结论,对一类特殊的图--极大外平面图(Δ≠6),给出了其关联色数.
简介:本文对外代数上复杂度为2的不可分解循环Koszul模M的极小投射分解进行了分析,构造出了基映射对应的矩阵的一种标准形式,进而刻划出了其合冲ΩM的滤链结构.
简介:一个图G的无圈边染色是一个止常的边染色使得其不产生双色圈.Alon,Sudakov和Zaks(2001)猜想:每一个简单图G是无到(△(G)+2)-边可染的,其中△(G)是G的最大度.本文对2-外平面图族证明了该猜想成立.
简介:隶首注术辨析王为桐属算经十书之一的《数术记遗》中写道:“……叙问曰为算之体皆以积为名为复更有他法乎先生曰隶首注术及有多种及余遗忘记忆数事而已①其一积算其一太乙其一两仪其一三才其一五行其一八卦其一九宫其一运算其一了知其一成数其一把头其一龟算其一珠算其一...
简介:近似邻近点算法是求解单调变分不等式的一个有效方法,该算法通过解决一系列强单调子问题,产生近似邻近点序列来逼近变分不等式的解,而外梯度算法则通过每次迭代中增加一个投影来克服一般投影算法限制太强的缺点,但它们均未能改变迭代步骤中不规则闭凸区域上投影难计算的问题.于是,本文结合外梯度算法的迭代格式,构造包含原投影区域的半空间,将投影建立在半空间上,简化了投影的求解过程,并对新的邻近点序列作相应限制,使得改进的算法具有较好的收敛性.
简介:所谓微积分的基本思想,就是人类的基本认知规律“用‘已知’解决‘未知”’在解决变量数学时的具体体现;用微积分的思想来指导微积分的教学,能使学生站在一个高的层次,高瞻远瞩的看问题,因此,学点“思想”甚至比多学点知识都更为重要,但是,要使广大教师能在教学中揭示、介绍学科的“思想”,就必须将其融入到教材之中。
简介:《齐鲁珠坛》1995年第四期刊登王为桐同志《隶首注术辨析》,(以下简称《辨析》),引起许多读者注意。该文强调珠算起源于汉末,距今约一千八百年;如谁超越此限,就说是“乱用史据和传证,混淆视听”;从而冠以“不合逻辑”,“想像悬源”的头衔。
简介:通过矩阵乘法运算的拆行拆列表示,巧妙地绕过初等矩阵,建立了矩阵乘积的初等变换术,进而导出了原来运用初等矩阵才能导出的有关初等变换、逆矩阵、矩阵方程、矩阵等价的若干重要结果.
简介:刘徽的“割圆术”是中国数学史上的重要成就之一,其中包含着中国数学家对无限问题的独特认识和致用的处理方式.很多高等数学教科书在讲述极限概念时大都提及,但所述,并未体现刘徽本意.刘徽的“割圆术”是为证明圆面积公式而设计出来的一种方法,其融合了庄、墨两家理解和处理无限问题的方法,并且使用了数列极限的“夹逼准则”和不可分量可积的预设.通过这些相关知识的历史考察,试图以HPM的方法来辅助解凄极限概念教学的难题.
外珠加除法
极大外平面图的关联色数
外代数上复杂度为2的Koszul模
2-外平面图的无圈边色数
隶首注术辨析
一般单调变分不等式的近似邻近外梯度算法
从刘徽的割圆术谈起
关于《隶首注术辨析》之辨析
矩阵乘积的初等变换术及其应用
数学史与数学教育(HPM)的一个案例——刘徽的“割圆术”与微积分