学科分类
/ 25
500 个结果
  • 简介:利用Z2-指标理论和临界点理论,讨论了一类阶微分方程u(4)+au"=μu+f(t,u),0〈t〈L,u(O)=u(L)=u"(0)=u"(L)=0共振问题解的多重存在,这里a〉0,f∈C1([0,L]×R,R),为特征值问题u(4)+au"=λu的某个特征值,其中特征值满足λ4〈0,λk〉0,k≥2.

  • 标签: 四阶微分方程 共振 临界点 Z2-指标理论
  • 简介:利用e-范数和锥上的不动点定理,给出了阶微分方程奇异边值问题两个C^2[0,1]和C^3[0,1]正解的存在.

  • 标签: 奇异边值问题 正解 e-范数
  • 简介:考虑下列具多偏差变元的阶p-Laplace方程:[φp(u″(t))]″+f(u(t))u′(t)+g(t,u(t-τ1(t)),u(t-τ2(t)),…,u(t-τn(t)))=e(t).利用重合度定理得出其周期解的存在结论.

  • 标签: 周期解 重合度 偏差变元 LAPLACE方程
  • 简介:对给定的复数a,本文引入一个用来刻画两个亚纯函数的重数相同的公共a值点的比重的量τk,并把有关这一量与拟亏量或者权分担相结合的条件附加到两个具有个分担值的亚纯函数上,得到了两个关于亚纯函数唯一的定理.

  • 标签: 亚纯函数 唯一性 IM分担 CM分担
  • 简介:本文研究下面的分数阶微分方程点边值问题解的存在,这里2〈d≤3,∞e[0,1),l≤p≤+m,1/p+1/q=1:Caput0分数阶导数,t|-K:[0,1]--LP[0,1],A.借助于格林函数的性质,应用锥拉伸和锥压缩不动点定理给出了一个正解的存在定理.

  • 标签: 分数阶微分方程 四点边值问题 正解 锥不动点定理
  • 简介:对具有个分担值的亚纯函数的唯一进行了研究,得到:如果两个非常数的亚纯函数具有个判别的IM分担值,那么要么这两个函数CM分担这个值,要么这两个函数的这些值的密指量(计数函数)满足不一等式。

  • 标签: 亚纯函数 分担值 唯一性
  • 简介:第JI卷初中毕业会考(满分100分,60分钟完善)一、选择题(每小题4分,共14分)1.Ii列运算中,正确的足()(A)O,26+曲!=(L3·厶’(B)((z+6)!=fz!+b:(C)2n6+3厶“=5(止(D)(“b)‘=“’一2出一6一!若点(cz一:,3一“)住第一象限,!J!lJ“的取值为().(i)2<“<3(口)“>33.如图0—8,A△_Bc中.F足l(.的I{I专,D是馏的中点,则s。,sw等f().(.{)I::(B)I:4A((j)l:,!(D)14.已Ⅻ:『』【1图C。☆玲IHC郁△B,)0‘{’8()。.呲j。D葛卜()

  • 标签: 检测题 解答题 圆心距 填空题 一次函数 毕业会考
  • 简介:)不等式川师大附中毛树勇邓贵业等是相对的,暂时的,而不等才是绝对的,永恒的。本章首先给出不等式的一系列性质。利用这些性质证明不等式,解不等式和解决应用问题。不等式的证明主要讲了:比较法、分析法、综合法、放缩法、反证法、换元法等。要注意把握每种证...

  • 标签: 不等式的解 解不等式 例题解析 证明不等式 取值范围 均值不等式
  • 简介:利用一个已有的抽象结论,证明了一类非线性阶方程两点边值问题变号解的存在

  • 标签: 四阶方程 变号解
  • 简介:确立了某类分块矩阵[M(11)M12XM21YM23ZM32M33]的最大秩公式,其中,X,Y和Z是三个受限于元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类元数三次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.

  • 标签: 四元数域 分块矩阵 线性矩阵方程 最大秩 三次矩阵方程 解集
  • 简介:阶微分方程非线性项f中含有未知函数“的二阶导数u”的情况下,运用Avery-Peterson不动点定理,研究了一类阶微分方程三点边值问题三个正解的存在,得到了该类边值问题存在三个正解的充分条件.

  • 标签: 边值问题 正解 Avery-Peterson不动点定理
  • 简介:<正>第1课边形(一)一、自学范围(P121-P124)二、学习准备1.观察教材P121所给图形,请把你知道的长方形、正方形、平行边形、梯形找到并勾画出来。二.上述图形都有它们共同的特点:,由条线段组成,这类图形叫做

  • 标签: 四边形的内角和 平行四边形 正方形 对角线 中心对称 变式题