学科分类
/ 1
18 个结果
  • 简介:在Banach空间中利用一个随机Mann迭代序列组,讨论了随机映射的随机不动点的存在性问题,得出了几个随机不动点定理,改进了相关文献中的相应结果.

  • 标签: 随机Mann迭代序列组 随机不动点 BANACH空间
  • 简介:用矩阵表示图像,构造正交均值差分变换矩阵,对原始图像进行正交变换,进一步取阈值,仅存储绝对值大于阈值的系数,获得数据压缩.解压缩过程只需作逆均值差分变换.最后将该算法分别应用于灰度和彩色图像的压缩处理,结果验证了算法的有效性.由于算法中所有变换都通过矩阵运算处理,且意义直观明了,故该算法是大学线性代数教学中一个非常好的应用案例.

  • 标签: 图像压缩 正交变换 均值 差分
  • 简介:在偏序度量空间中,获得了一些耦合随机不动点定理,引入F-g-不变集新定义,减弱了F的混合g-单调性,所得结果也是近期文献相关结果的推广.

  • 标签: 混合g-单调性 F-g-不变集 耦合随机不动点
  • 简介:有密度依赖者粘性的one-dimensionalcompressible流动的方程的答案的全球存在被证明。明确地,起始的数据上的假设是模常数在可能不同的x=+∞和x=-∞,被说密度和速度在L~2,并且密度上面并且下面被围住离开零。Theresults也证明甚至在这些条件下面,既不真空状态也不集中状态能在有限时间被形成。

  • 标签: 密度 粘性 可压缩NAVIER-STOKES方程 数学分析
  • 简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.

  • 标签: 伪压缩映射 复合隐格式迭代 公共不动点
  • 简介:设X是一致光滑的Banach空间,T:D(T)属于X→2^x是局部严格伪压缩映射且有不动点.设Q是从X到D(T)上的非扩张保核映射.任取x0∈D(T)归纳定义:xn+1=Qpл,pn∈(1-cn)xn+cnTQyn,yn∈(1-dn)xn+dnTxn.如果存在有界序列{wn}和{zn},wn∈TQyn,zn∈Txn.则{xn}强收敛于T的唯一不动点.其中数列{cn}和{dn}满足适当条件.

  • 标签: 不动点 局部严格伪压缩映射 ISHIKAWA迭代 一致光滑的Banach空间
  • 简介:在G-度量空间中,获得了非线性压缩算子F:X×X→X满足混合-g-单调性质下的耦合叠合点结果.减弱了压缩条件,所得结果也是近期文献相关结果的推广.

  • 标签: 耦合叠合点 混合-g-单调性质 (α)-g-容许
  • 简介:引进了MengerPM-空间中多值情形下的相容映象和弱相容映象概念,并研究了二者之间的联系.在此基础上,获得了MengerPM-空间中若干新的不动点和重合点定理.最后,给出了这一结果在度量空间中的应用.

  • 标签: MENGER PM-空间 不动点和重合点 多值映象 弱相容映象
  • 简介:在一般的实Banach空间中,研究Lipsehitz渐近伪压缩映象和渐近非扩张映象不动点的迭代逼近问题,给出Ishikawa迭代序列强收敛的充要条件,所得结果改进和推广了张石生,肖建中等人的主要结果,修正和推广了朱玲娣等人的相应结果.

  • 标签: 渐近伪压缩映象 渐近非扩张映象 修改的Ishikawa迭代序列 不动点
  • 简介:研究了Lipschitz伪压缩映射的黏滞迭代方法.设E为一致光滑Bannach空间,K为E的闭凸子集,TK→K为Lipschitz伪压缩映射且其不动点集F(T)非空,f为K上的压缩映射且t∈(0,1).若黏滞迭代路径{xt},xt=(1-t)f(xt)+tTxt且对任意初始向量x1∈K,迭代序列{xn}定义为xn+1=λnθnf(xn)+[1-λn(1+θn)]xn+λnTxn,则当t→1-和n→∞时,{xt}和{xn}都强收敛于T的不动点,同时该不动点还是一类变分不等式的解.

  • 标签: 一致光滑BANACH空间 伪压缩映射 不动点 强收敛
  • 简介:研究p-致凸Banach空间中渐近半压缩映象的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性.本文始终假设X是P-致凸Banach空间.最近,r-渐近半压缩映象的概念被引入,并给出了X中该映象(此时,r=P)的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性定理,文章所得结果改进、推广和统一了近期相关结果.

  • 标签: 一致凸BANACH空间 r-渐近半压缩映象 修正的Mann迭代 修正的Ishikawa迭代