简介:讲座了超导中连续Josephson结系统解的渐近行为,利用先验估计证明了当时间趋于无穷时解收敛于对应稳态问题的解。
简介:从量化的角度,引入了风险和违约等信用概念的数学描述。应用概率论、随机过程和微分方程的数学工具,讨论了金融和信用风险的数学模型以及应用。
简介:研究描述单模光纤中光孤立子传播的具光纤损耗项的三阶非线性Schrodinger方程,首先证明了整体解的存在唯一性结果,然后证明其长距离行为由紧的整体吸引子刻画,并给出了吸引子的Hausdorff维数和分形维数的上界估计,最后研究了吸引子的正则性.
简介:ASYMPTOTICBEHAVIOROFOPERATORSOFPROBABILISTICTYPEINL_pSPACES¥CHENWENZHONG;CUIZHENLU(DepartmentofMathematicsXiamenUniversity,Xi?..