学科分类
/ 1
14 个结果
  • 简介:综合题是指涉及知识面较宽,知识综合性强,有一定难度,解题过程较为复杂的一类试题.综合题主要考查学生综合运用知识解题的能力,在中考试题中,它主要体现选拔功能,让成绩好,能力强的学生脱颖而出,便于选拔.综合题按所涉及的知识体系来讲可分为单科综合题(代数综合题、几何综合题)与双科综合题(代数几何综合题、几何代数综合题),在中考试题中,压轴题往往都是双科综合题.综合题的解题方法按逻辑学的观点来讲分为综合法与分析法.●综合法 综合法又称由因导果法,它是从题目的已知条件出发,通过逐步递推或论证,最后得出结论.综合法常用在解从已知到结论的递推途径不很复杂,或有固定解题定势的综合题,其主要用于解代数综合题,或

  • 标签: 综合题 解题策略 综合法 分析法 几何代数 压轴题
  • 简介:隶首注辨析王为桐属算经十书之一的《数记遗》中写道:“……叙问曰为算之体皆以积为名为复更有他法乎先生曰隶首注及有多种及余遗忘记忆数事而已①其一积算其一太乙其一两仪其一三才其一五行其一八卦其一九宫其一运算其一了知其一成数其一把头其一龟算其一珠算其一...

  • 标签: 数术记遗 黄帝时代 研究历史 不合逻辑的推理 计算工具 算子
  • 简介:数与式1.计算93x-712x+26·38x=.2.-13的倒数是.3.(-6)2=.4.2000用科学记数法表示为.5.a的3倍与b的一半的和用代数式表示为.6.分解因式a2-2ab+b2-c2=.7.配上适当的数,使等式x2-x+1=(x-)2+成立.8.35的相反数是,|-6|=.9.用科学记数法表示:570000=.10.分解因式:a-ab2=.11.已知线段a=4cm,b=9cm,则线段a、b的比例中项c=cm.12.化简:a(a-1)2-(a+1)(a2-a+1)=.13.计算:(aa-b+bb-a)÷1a+b=.14.计算-32-(-5)的结果是.15.分解因式:9-(2a+b)

  • 标签: 乌鲁木齐 填空题 取值范围 分解因式 哈尔滨 云南
  • 简介:数与式1.若a≠0,则下列运算正确的是( ).(A)a4·a2=a8  (B)a2+a2=a4(C)(-3a4)2=9a6(D)(-a)4÷(-a)2=a22.下列各式中计算错误的是( ).(A)ab=acbc(c≠0)(B)a+bab=a2+aba2b(C)0.5a+b0.2a-0.3b=5a+10b2a-3b(D)x-yx+y=y-xy+x3.化简12-3的结果是( ).  (A)-2+3  (B)-2-3(C)2+3(D)2-34.2x2·3x3等于( ).(A)6x5 (B)6x6 (C)5x5 (D)5x65.8的立方根是( ).(A)4 (B)±4 (C)2 (D)±26.下列根式

  • 标签: 乌鲁木齐 选择题 哈尔滨 平行四边形 取值范围 不等式组
  • 简介:全国第十二届少数民族珠算技术比赛会在四川西昌闭幕来自内蒙古、吉林、湖北、湖南、广西、海南、四川、贵州、云南、西藏、甘肃、宁夏、新疆十三个有自治州的省和自治区(青海未参加)的19个民族56名优秀选手、教练组成的14个少数民族珠算代表队,于8月13~14...

  • 标签: 少数民族 珠算技术 吉林省 四川西昌 第十二届 代表队
  • 简介:所谓微积分的基本思想,就是人类的基本认知规律“用‘已知’解决‘未知”’在解决变量数学时的具体体现;用微积分的思想来指导微积分的教学,能使学生站在一个高的层次,高瞻远瞩的看问题,因此,学点“思想”甚至比多学点知识都更为重要,但是,要使广大教师能在教学中揭示、介绍学科的“思想”,就必须将其融入到教材之中。

  • 标签: 割圆术 认知规律 用“已知”解决“未知” 数学思想
  • 简介:《齐鲁珠坛》1995年第四期刊登王为桐同志《隶首注辨析》,(以下简称《辨析》),引起许多读者注意。该文强调珠算起源于汉末,距今约一千八百年;如谁超越此限,就说是“乱用史据和传证,混淆视听”;从而冠以“不合逻辑”,“想像悬源”的头衔。

  • 标签: 《算法统宗》 数术记遗 科学技术 “不合逻辑” 马克思主义 计算工具
  • 简介:2011年9月9日,财政部发布《会计改革与发展"十二五"规划纲要》(财会[2011]19号)(以下简称《规划》),这是指导未来五年我国会计改革与发展的纲领性文件。近日,财政部会计司负责人就《规划》的有关问题回答了记者的提问。

  • 标签: 财政部 负责人 会计 规划 改革 记者
  • 简介:通过矩阵乘法运算的拆行拆列表示,巧妙地绕过初等矩阵,建立了矩阵乘积的初等变换,进而导出了原来运用初等矩阵才能导出的有关初等变换、逆矩阵、矩阵方程、矩阵等价的若干重要结果.

  • 标签: 初等变换 初等矩阵 矩阵乘积 初等变换术
  • 简介:刘徽的“割圆”是中国数学史上的重要成就之一,其中包含着中国数学家对无限问题的独特认识和致用的处理方式.很多高等数学教科书在讲述极限概念时大都提及,但所述,并未体现刘徽本意.刘徽的“割圆”是为证明圆面积公式而设计出来的一种方法,其融合了庄、墨两家理解和处理无限问题的方法,并且使用了数列极限的“夹逼准则”和不可分量可积的预设.通过这些相关知识的历史考察,试图以HPM的方法来辅助解凄极限概念教学的难题.

  • 标签: 刘徽 割圆术 无限 可积