简介:随便取一个自然数,如果它是偶数,用2除它;如果它是奇数,将它乘3之后再加1,这样反复运算,最终必然得1.比如,取自然数N=6.6是偶数,先用2除,6÷2=3;3是奇数,要将它乘3之后再加1,3×3+1=10;按着上述法则往下做:10÷2=5;5×3+1=16;16÷2=8;8÷2=4;4÷2=2;2÷2=1.从6开始经历了3→10→5→16→8→4→2→1,最后得1.通过大量演算发现最后结果总是得1.于是数学家提出如下猜想:对于任一个自然数N,若N是偶数,就把它变成N2;若N是奇数,就把它变成3N+1.按照这个规则运算下去,最后必然得1.这个猜想到目前还没有人给予证明,不过日本东京大学的米田信
简介:研究服务员强制休假的M/M/1排队模型的主算子在左半复平面中的特征值,证明(λ-μ-b)-√(b+μ)2-3λ2-μb/2是该主算子的几何重数为1的特征值.
简介:本文提出了求矩阵A的Jordan标准形的另一方法:利用rank(λ(E-A)^P的结果,得出了对应于特征(λi的Jordan块的阶数和个数,然后求出矩阵A的Jordan标准形.
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:LetMbeapositivequaternionicKhlermanifoldofdimension4m.Wealreadyshowedthatifthesymmetryrankisgreaterthanorequalto[m/2]+2andthefourthBettinumberb_4isequaltoone,thenMisisometrictoHP~(m).Thegoalofthispaperistoreportthatwecanimprovethelowerboundofthesymmetryrankbyoneforhighereven-dimensionalpositivequaternionicKahlermanifolds.Namely,itisshowninthispaperthatifthesymmetryrankofMwithb_4(M)=1isgreaterthanorequaltom/2+1form≥10,thenMisisometrictoHP~m.OneofthemainstrategiesofthispaperistoapplyamoredelicateargumentofFrankeltypetopositivequaternionicKhlermanifoldswithcertainsymmetryrank.
简介:本文讨论形如AnX—ACnX的方程,其中An是一个对称三对角矩阵,Cn是一个对角矩阵.对矩阵An进行3×3分块,给定An的一个非顺序主子阵Ar+1,r+s,给定Cn和四个向量X1=(x1,…,xr),X3=(xr+s+1,…+,xn)Y1=(y1,…,y1),Y3=(yr+s+1,…,yn)'和两个不同实数A,P,构造一个对称三对角矩阵A。和两个向量X2=(Xr+1,…,Xr+x)',Y2=(yr+1,…,yr+s)’,满足AnX=λCnX和AnY=μCnY,其中X=(X1,X2,X3,Y=(Y1,Y2,Y3)本文给出问题有解的条件,解的表达式和相应算法,并给出数值算例验证算法的有效性.
简介:应用线性算子的积分群理论证明M/M^B/1排队模型的时间依赖解的存在唯一性,其次推出M/M/1排队模型的时间依赖解的存在唯一性。