简介:本文研究等离子体中的高功率超短激光通道问题中出现的一类非线性Schrodinger方程,利用变分原理,把一类非线性Schrodinger方程转换为变分问题,再利用喷泉定理及对偶喷泉定理证明一类非线性Schrodinger方程存在驻波解.
简介:应用SAS/STAT估计非线性回归模型中的参数.首先,通过变量代换,把可以线性化的非线性回归模型化为线性回归模型,并用普通最小二乘法、主成分分析法和偏最小二乘法求模型中的参数和回归模型.其次,通过改良的高斯一牛顿迭代法来估计Logistic模型和Compertz模型中的参数.
简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:论文研究非自反Banach空间中Hille-Yosida算子的非线性Lipschitz扰动.首先,证明Hille-Yosida算子的非线性Lipschitz扰动诱导的微分方程的温和解构成非线性指数有界Lipschitz半群;其次,证明非线性扰动半群保持原半群的直接范数连续性质.获得的结果是线性算子半群某些结论的非线性推广.
简介:利用新的比较结果和半序方法,研究TBanach空间中二阶积-微分方程组初值问题解的存在唯一性及逼近解的迭代序列和误差估计.
简介:研究了Banach空间中非线性混合型微分-积分方程初值问题u'=f(t,u,Tu,Su),u(0)=x0的整体解,完全没有要求f的任何增性,利用Monch不动点定理和比较结果得到了初值问题整体解的存在性和唯一解,并且给出了一致收敛于唯一解的迭代序列,改进推广和统一了已有的许多结果.