简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。
简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:链路预测是网络信息挖掘的主要研究内容,通过对网络结构和其他信息的分析,挖掘缺失的链接或预测未来可能出现的链接。链路预测在推荐系统、社会网络和生物网络分析中有着十分广泛的应用。本文首先介绍了基于公共邻居、路径和随机游走的8种常用的链路预测指标.并在此基础上提出了一种基于这8种指标线性组合的度量指标,并经过实验找出了较好的优化参数。然后,提出了基于这8种指标的神经网络模型.并分别基于Weka平台和FANN库进行了实现。在社会网络的4个公开测试集上的实验结果表明.基于FANN库的神经网络模型的预测结果最好,在4个数据集上最高的AUC值分别达到了0。95l8、0.9289、0.7480和0.8677,与单一指标最好的AUC值相比分别提高了3.92%、1.45%、7.06%和24.35%。
简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.
简介:本文采用Lyapunov-Krasovskii泛函方法对一类变时滞细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。
简介:研究了具时变时滞的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.
简介:线性矩阵不等式的优良性质可用于解决细胞神经网络中的保性能控制问题.本文介绍了线性矩阵不等式的相关概念和性质;通过对Schur补引理的改进提出了一个引理,从而更容易将二次矩阵不等式转化为线性矩阵不等式,更好地应用于控制参数求解;提出了LMI的基本问题和MATLAB工具箱,并对LMI在细胞神经网络的保性能控制问题作出了简要描述.
简介:新课程倡导信息技术与课堂教学的有机整合,促进课堂教与学方式的转变.所谓整合有两个层次的意义:一是“替代”‘,即用信息技术替代原有的教学手段,帮助教师或学生解决教与学的问题;二是“创新”,即把信息技术作为构建自主、探究学习环境的重要因素来支持学习.图形计算器是一台计算与作图功能合二为一的新型计算器,具有智能型模拟仿真功能,它可以使学生在学习的过程中自己进行试验操作,完成课堂上一些难以完成的实验,解决教学上的难点,产生出一种图文并茂、丰富多彩的人机交互方式,这样一种交互方式对于教学过程具有重要意义.现以《函数图像的变换》课堂为例,来初步感受手持技术运用于学生的探究实践活动,进一步思考“如何运用信息技术促进学生的数学学习”.