学科分类
/ 1
5 个结果
  • 简介:对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(BayesianRPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有BayesianRPCA和MoG-RPCA提取出了完整的前景目标,但是BayesianRPCA计算速度很慢,且不能够处理复杂噪声.所以MoG-RPCA模型更具有对复杂噪声的适应性,动、静态背景情况下均提取出精度较高的前景目标,且具有较快的计算速度.当图像不稳定时,采用改进的MoG-RPCA模型对非稳定拍摄的抖动视频进行前景目标提取,并在第197帧抖动图像中清晰地提取出显著前景目标,且运算速度较快.在为了快速找到目标出现的帧时,对高斯混合模型背景差分法进行改进,利用K-means聚类算法快速得到聚类中心点,然后作为高斯混合模型背景更新时的初始化均值参数,从而提高在复杂场景下前景目标的检测精度.对于多角度追踪任务,不同角度、近似同一地点的多个监控视频图像中前景目标的提取,可采用跨摄像头视角跟踪结果融合的方法,然后对目标进行匹配.

  • 标签: 前景目标提取 MoG-RPCA模型 K-means高斯混合模型 多角度追踪
  • 简介:通过消息监控识别罪犯是一个十分有意义的实际问题。采用Markov模型,将整个消息传递网络看作一个犯罪传递的Markov链,根据所收集到的消息估计出两个节点(人)之间犯罪传递的概率,得到一个Markov概率转移矩阵,并求出网络长期运行的稳定解,作为各节点(人)参与犯罪程度的度量。通过实例说明了该方法的有效性。

  • 标签: 通信主题 转移概率 嫌疑程度 MARKOV模型
  • 简介:研究古塔的变形问题,给出了计算古塔各层形心的方法;分析了古塔各种变形,给出了描述古塔变形的几何量,为管理部门制定保护措施提供了依据。

  • 标签: 变形 形心 倾斜 弯曲 扭曲 曲率
  • 简介:在不等精度测量传感器的测量数据处理中,选择合理的权重对处理结果的影响十分明显。本文对目前的靶场数据处理中采用的两种加权方法进行了分析,提出了一种新的精度加权方法。通过对各种加权方法的特点及合理的比较,给出了各种加权方法的使用条件和原则。

  • 标签: 传感器 数据处理 精度 不等精度测量 数据处理
  • 简介:测量中大量的函数模型都是非线性回归模型.当回归变量含有一定的测量误差时,我们得到非线性测量误差模型.本文讨论了这种模型中未知参数具有正态先验分布时的参数Bayes估计方法,并对这种估计进行了影响分析,证明了删除模型与均值漂移模型中参数的Bayes估计相同,利用Cook统计量给出了删除模型下参数的Bayes估计的影响度量.

  • 标签: BAYES估计 非线性模型 非线性回归模型 测量误差模型 均值漂移模型 函数模型