学科分类
/ 2
22 个结果
  • 简介:本文考虑具有张量积结构线性系统的数值解法.该线性系统常常来源于高维立方体上线性偏微分方程的有限差分离散化.利用张量一矩阵乘法,给出了基于张量格式的求解这类线性系统的共轭梯度法.与求解标准线性系统的共轭梯度法比较,新的算法能够节约大量的计算量及存储空间.

  • 标签: 张量积 张量-矩阵乘法 共轭梯度法 高维
  • 简介:建立了一个基于平均场动力学的微分方程组和反应一扩散模型的双层耦合网络模型,用来分析、预测及评价地球生物与环境的健康问题。在双层耦合网络模型中,根据地球地理和气候分布,将全球划分为九块区域,并以此作为全球网络的节点;同时,七个具有代表性的反映地球健康状况的元素,如人口密度、森林、空气质量、生物多样性等,被挑选出作为元素网络的节点;再通过平均场动力学微分方程,建立并描述各个元素间的联系与相互作用;利用数据确定模型参数,从而完善模型,最后,以此模型完成寻找临界点、灵敏度分析、网络结构分析、引入不确定性等工作。

  • 标签: 双层耦合网络模型 平均场动力学方程组 反应-扩散模型 灵敏度分析 网络结构
  • 简介:旋转刚柔耦合系统在航空航天、机器人、高速机构以及车辆等领域有着广泛的应用,主要描述负载在旋转刚体上的柔性梁的运动。对旋转刚柔耦合系统施加控制使得整个闭环系统达到:1)旋转刚体以预期的旋转角速度运动;2)负载在刚体上的柔性梁镇定。本文将从控制器设计的角度出发,介绍目前在旋转刚柔耦合系统控制方面取得的主要研究成果。

  • 标签: 刚柔耦合系统 控制 镇定
  • 简介:Undersomegeneralcontinuousandcompactconditions,theexistenceproblemsoffikedpointsanddcoupledfixedpointsforincreasingoperatorsarestudied.anapplication,weutilizetheresultsobtainedtostudytheexistenceofsolutionsfordifferentialinclusionsinBanachspaces.

  • 标签: 增算子 耦合不动点 存在性 巴拿赫空间
  • 简介:给出张量积Said-Ball曲面降多阶逼近的一种方法.该方法根据原张量积Said-Ball曲面Pn,m(u,v)与降多阶张量积Said-Ball曲面Qn1,m1(u,v)(n1≤n-1,m1≤m-1)在最小二乘范数下的距离函数在单位正方形[0,1]×[0,1]上取最小值,从而得到了用矩阵表示的降多阶张量积Said-Ball曲面Qn1,m1(u,v)的控制顶点{qij}i^n1=0,^、m}=0的显示表示式.在降多阶过程中,分别考虑了带角点高阶插值条件和不带角点插值条件的情形.文末附有数值例子,并将本文方法与参考文献(9)的方法做了比较.

  • 标签: 张量积Said-Ball曲面 降多阶 角点插值
  • 简介:全日制高中《立体几何》(必修)教材在第83到84页的例2中介绍了半径为R的的直观图画法(未给证明),由于画图顺序不恰当,并且所画三个大圆直观图(椭圆)没有定量标准,使得学生学习时难以把握其画法,画出的图形往往不很直观,本文参考教材提供一种“八点定位...

  • 标签: 直观图 画椭圆 近似椭圆 平面内 正等测 辅助线
  • 简介:在偏序度量空间中,获得了一些耦合随机不动点定理,引入F-g-不变集新定义,减弱了F的混合g-单调性,所得结果也是近期文献相关结果的推广.

  • 标签: 混合g-单调性 F-g-不变集 耦合随机不动点
  • 简介:研究了二阶微分方程组的耦合积分边值问题.在一对上-下解和下-上解的条件下,利用一个新的比较原则和Fredholm定理给出了其极解的存在性.

  • 标签: 耦合积分边值问题 极解 上-下解 下-上解
  • 简介:在G-度量空间中,获得了非线性压缩算子F:X×X→X满足混合-g-单调性质下的耦合叠合点结果.减弱了压缩条件,所得结果也是近期文献相关结果的推广.

  • 标签: 耦合叠合点 混合-g-单调性质 (α)-g-容许
  • 简介:在一对上-下解和下-上解存在的条件下,研究了一类二阶耦合积分边值问题{-x″=f1(t,x,y,x′),-y″=f2(t,x,y,y′),t∈[0,1],x(0)=y(0)=0,x(1)+∫01y(t)dA(t)=0,y(1)+∫01x(t)dB(t)=0解的存在性,其中f1,f2∈C([0,1]×R3,R).

  • 标签: 耦合积分边值问题 上-下解 下-上解 NAGUMO条件
  • 简介:研究了具有扭转耦合效应的复合薄壁梁黎斯基的性质以及指数稳定性.首先证明该系统决定算子的预解式是紧的,且可生成群.其次,通过对该系统算子谱的渐近分析,证明了除至多有限个本征值外,其算子的谱是单重可分离的.特殊地,我们获得了自由系统的频率渐近表达式,因而利用克尔德什定理,证明了在希尔伯特状态空间中算子广义本征函数列的完备性.最后,结合黎斯基的性质及算子谱的分布证明了该系统的指数稳定性.

  • 标签: 复合薄壁梁 渐近本征值 黎斯基 指数稳定性
  • 简介:研究了一类椭圆边值问题在外部区域上正径向解的存在性,当非线性项f(u)关于u超线性或次线性增长的情形,获得了该问题正径向解的存在性.

  • 标签: 椭圆边值问题 球外部区域 正径向解
  • 简介:给出了C^n单位上的Bloch空间上的复合算子的下有界的一个充分条件和一个必要条件。对必要条件得出了较优的结论.

  • 标签: BLOCH空间 复合算子 下有界性