简介:本文得到了Kantorovic变形算子P^*n(f,x)对Lipschiz函数f(x)映射的不变性质,而Bernstem-Kantorovic-Bezier变形算子对f(x)∈C[0,1]的逼近,则改进了原有的估计。
简介:从附加结构的角度将流形的多种概念有机地串联起来,并给出了一种直观理解流形、微分流形等抽象概念的新颖方式.同时,本文阐述了微分几何的主要特点、思想,介绍了与附加结构相关的流形分类问题、Poincare猜测等的研究情况.
简介:设G是一个有限的简单连通图.D(G)表示V(G)的一个子集,它的每一个点至少有一个最大匹配不覆盖它.A(G)表示V(G)-D(G)的一个子集,它的每一个点至少和D(G)的一个点相邻.最后设C(G)=V(G)-A(G)-D(G).在这篇文章中,下面的被获得.(1)设u∈V(G).若n≥1和G是n-可扩的,则(a)C(G-u)=和A(G-u)∪{u}是一个独立集,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配,并且它匹配A(G-u)∪{u}的所有点与D(G-u)的不同分支的点.(2)若G是2-可扩的,则对于u∈V(G),A(G-u)∪{u}是G的一个最大障碍且G的最大障碍的个数是2或者是|V(G)|.(3)设X=Cay(Q,S),则对于u∈Q,(a)A(X-u)==C(G-u)和X-u是一个因子临界图,或者(b)C(X-u)=和X的两部是A(X-u)∪{u}和D(X-u)且|A(X-u)∪{u}|=|D(X-u)|.(4)设X=Cay(Q,S),则对于u∈Q,A(X-u)∪{u}是X的一个最大障碍且X的最大障碍的个数是2或者是|Q|.更多还原
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。
简介:利用位移秩和交换Hessenberg矩阵代数给出结构矩阵的三角表示,并讨论在Toeplitz矩阵和Toeplitz+Hankel矩阵方面的应用.